M. Asun Canteraa, G. Czélc,b, M. Jalalvandb, M. R. Wisnomb,
aGrupo Materiales+Tecnologías/Mecánica de materiales, Department of Mechanical Engineering.
University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
bAdvanced Composites Centre for Innovation and Science, University of Bristol. Queen's Building, BS8 1TR, Bristol, United Kingdom.
cDepartment of Polymer Engineering, Budapest University of Technology and Economics. Műegyetem rkp. 3. H-1111 Budapest, Hungary
Determinación experimental de los parámetros de Weibull de composites en fallo por tracción usando laminados hibridos
Cantera et al 2019a-image1.png
Historia del artículo:

Recibido 5 de Mayo 2017

En la versión revisada 5 de Mayo 2017

Aceptado 31 de Mayo 2017

Accesible online 21 de Junio 2017

Los Composites tienden a fallar en sus defectos, distribuidos de forma aleatoria. Esto hace que la resistencia a la rotura disminuya cuando aumenta el volumen de material ensayado, fenómeno conocido como “size effect” o “volumen effect”. Conocer el valor de los parámetros de Weibull es clave para la modelización y el correcto diseño de componentes grandes. En este trabajo se propone el llamado test de fragmentación para obtener los parametros de Weibull de forma y escala, que se validan con el “scaled test”.

Los composites hibridos de láminas de carbono/epoxi entre láminas de vidrio/epoxi pueden presentar una respuesta pseudo-dúctil, que se manifiesta mediante una meseta o “plateau” en curvas tension-deformación. El diseño de la muestra favorece la fragmentacion o fractura gradual de las láminas de carbono eliminado la delaminación inestable en el “plateau”. Los eventos de fractura se identifcan por video y registro acústico en 11 muestras. Los datos de deformación de fractura se ajustan a la distribución de Weibull siguiendo un proceso iterativo. El procedimiento se ha validado mediante resultados previos de Elementos Finitos. El “volumen effect” se ha validado con los resultados de series de ensayos de tracción de muestras de dimensiones escalas por factores de 2,4 y 8 en cada dirección. Otra ventaja importante de la hibridación es la supresión de concentración de tensiones en la lámina de carbono, empleandose muestras sin “end-tab”. Los datos de ambos test presentan muy buen ajuse a la distribución de Weibull, se han comparado, obteniendose valores muy próximos.

Palabras clave:

Distribución de Weibull

Composites Híbridos

Ensayos de tracción

Fractura

Experimental determination of the Weibull parameters in tensile failure using hybrid laminates
Cantera et al 2019a-image2.png
Keywords:

Weibull distribution

Hybrid composites

Tensile test

Fracture

Composites trend to failure in their defects, which are randomly distribuited. This causes that the tensile strength decreases when the volumen of material tested increases. This fenomenon is known as size effect or volume effect. Knowing the value of the Weibull parameters is key for modeling and the correct design of large components. In this work, one tensile test are proposed, named the fragmentation test to obtain the shape and scale Weibull parameters that are validated with the scaled test.

Carbon/glass hybrid composites can exhibit pseudo-ductile response in the stress-strain curves by having a part with small slope or plateau. The specimen design promotes fragmentation or gradual fracture of carbon layer and suppresses unstable delamination at the plateau. The facture events have been identified by video and accoustic emission monitoring in 11 specimens. The data of fracture strain has been adjusted to the Weibull distribution following the proposed iterative process. The process has been validated using previous results of Finite Elements. The volumen effect has been validated with the results of series of tensile tests, with dimensions scaled by factors of 2,4 and 8 in each direction. Another important advantage of hybridization is the suppression of the stress concentration in the carbon layer, which makes simple end-tab free specimens feasible. The results of two tests have been compared, obtaining very close values.


1 Introducción

La variabilidad en la resistencia en ensayos de tracción y flexión y el “size effect” en los composites de fibra reforzada se ha estudiado usando la distribución de Weibull. A nivel de fibra, se han propuesto ensayos para extraer los parámetros de Weibull a partir de los datos experimentales [1], siendo métodos complicados, laboriosos, con numerosas dificultades a nivel de modelización [2]. En ensayos de tracción cuantificar la variabilidad es difícil debido a la concentración de tensiones [3]. En flexión pueden variar por tracción y compresión que puede enmascarar la variabilidad asociada al size effect. La comunidad científica ha mostrado gran interés en la respuesta pseudo-dúctil de algunos composites híbridos de carbono/epoxi embebidos en láminas translúcidas de fibra de vidrio/epoxi [4,5], según se muestra en la fig. 1. Recientes ensayos han demostrado que la concentración de tensiones en láminas de carbono se puede eliminar totalmente cuando es intercalado entre láminas de vidrio [6].

Cantera et al 2019a-image5.png

Figura 1. Esquema de un laminado hibrido vidrio

El fallo inicial se produce en las láminas de carbono debido a la baja deformación de rotura de las fibras de carbono. En laminados híbridos UD con láminas de carbono suficientemente finas y otras condiciones de diseño [7], se puede producirse múltiples fragmentaciones, asociadas con una meseta o plateau en la curva tensión-deformación, tal como muestra la fig. 2

Cantera et al 2019a 2169 cantera fig2.png
Figura 2. Respuesta pseudo-ductil de laminado hibrido vidrio/carbono/vidrio en ensayo de tracción.

El objetivo de este trabajo es estimar los parámetros de Weibull de composites de carbono/epoxi a través del mecanismo de fallo de fragmentación en laminados híbridos. Para ello, se ha modificado la intercara para suprimir la delaminación y favorecer la fragmentación múltiple. Las deformaciones se han monitorizado por video y registro acústico a lo largo del plateau. Se propone un método iterativo para el ajuste de experimental de parámetros de Weibull. El método se ha utilizado en un estudio previo de Elementos Finitos con elementos cohesivos [8]. Para validar se realiza el “scaled test” para el mismo material.

2 Parte experimental

El espesor de cada muestras ensayadas se han diseñado para predecir el modo de fallo según los siguientes criterios:

  • El espesor de lámina de fibra de vidrio tienen que ser suficiente para soportar toda la fuerza cuando se rompe la lámina de carbono [7]
  • En test de fragmentación, se evita la delaminación de la lámina de carbono antes de la fragmentación multiple, es decir, GII<GIIC la tasa de liberación de energía (GII) de la lámina de carbono [6,9] tiene que ser menor que la tenacidad a la fractura interlaminar el modo II (GIIC). Esto se puede conseguir aumentando la tenacidad en la intercara sin variar los espesores de las láminas. Para ellos se introduce láminas de resina en la intercara carbono/ vidrío.
  • En el caso del scale test, el criterio es al revés, es decir promover la delaminación de la lámina de carbono después de la primera fractura. En este caso, la deformación de rotura de la lámina de carbono se puede determinar por una caída en la curva tensión-deformación, como muestra la fig. 3

File:Cantera et al 2019a-image7.png

Figura 3. Tipica gráfica de ensayo de tracción

Por lo tanto cuando se modifica la intercara con láminas de resina extra, la fragmentación de la lámina carbono ocurre después de la delaminación de los fragmentos de carbono. El laminado de la fig. 4 muestra la fragmentación cuando se añade una capa de resina extra en la intercara

Cantera et al 2019a-image8.jpeg

Figura 4. Specimen de tracción con fragmentación debido a película de resina en la intercara.

2.1 Material y equipos.

Los materiales usados en el diseño y en los ensayos son prepregs de fibra de vidrio/913 epoxi S-glass (SG) de Hexcel de espesor estandar y de TC35 /913 epoxi (SK Chemicals) de espersor fino. Ambas resinas tienen la misma temperatura de curado y son compatibles, observandose buena integridad en los laminados híbridos. La fabricación se ha realizado en autoclave a 120ºC, 0.7 MPa durante 2 horas. Se han usado máquinas universales Instron 8801, 100 kN y Instron 8802, 250 kN. Las deformaciones se han medido con un sistema Imetrum videogauge de longitud 15, 45, 100 y 200 para las configuraciones escaladas. La monitorización acústica (AE) se realizó con PCI-2 de (PAC). Los puntos asociados a la fracturas se identifican mediante observación con video y AE.


Cantera et al 2019a-picture-Text Box 23.svg

Las dimensiones nominales de las 11 muestras del test de fragmentación [SG2/RF/TC352]S son: 20 x 200 mm, siendo el espesor de la capa de carbono tC=0.095 mm, y su volumen 380 mm3, RF Resin Film 913. En la fig. 5 se señalan las fracturas de la lámina de carbono y los fragmentos.

Cantera et al 2019a-image9-c.jpeg

Figura 5. Vista de especimen de fragmentaciíon, fragmentos

Las configuraciones del scaled test y el número de muestras ensayas son: [SG2/TC352]S (9) [SG4/TC354]S (10) [SG8/TC358]S (9) y [SG16/TC3516]S (6)de anchos 5, 10, 20 y 40 mm y longitud 30, 60, 120, 240 respectivamente.

3 Estimación de Parámetros de Weibull

Inicialmente la deformación asociada a la fractura i se calcula:

(1)


siendo la fuerza aplicada en el ensayo, A el área, el módulo de Young del laminado híbrido y εT la deformación termica residual. Los valores iniciales de los parámetros de Weibull m εᄌ÷�﾿R?  , se obtienen a través del programa MINITAB 17 y se estima la longitud efectiva de cada fragmento. Posteriormente se realiza un proceso iterativo donde se obtiene valores de deformación y longitud efectiva:

(2)


Donde L0 es la longitud libre, m it 1 esel parámetro de forma obtenido mediante los valores de . El proceso se repite comprobando la diferencia . Si es mayor que la precisión requerida, el proceso iterativo continúa, en caso contrario se asume que converge obteniéndose los valores locales de la deformación de lámina de carbono en cada fractura.

4 Resultados y validación

En la fig. 6 se muestra las gráficas de Weibull del specimen 2 mediante selección visual y acústica con niveles de energía bajo, medio y alto en iteraciones 1 y 3

File:Cantera et al 2019a-image17.png

Figura 6. Parametros de Weibull con selección visual y acústica

El proceso iterativo presenta buena convergencia, realizándose hasta la 3era iteración. Los puntos experimentales se ajustan a una línea recta, tal y como se aprecia en la fig. 7

File:Cantera et al 2019a-image18.png

Figura 7. Parametros de Weibull con eventos de fractura seleccionados visualmente y con AE

No se ha considerado AE bajo para evitar captar la rotura de fibras de carbono. Los resultados del parámetro de forma obtenidos según el tipo de selección de los eventos son:

  • selección visual m=29.3
  • AE Medio m=25.1
  • AE Alto m=24.7

La detección visual de las fracturas proporciona un valor de m mayor. A mayor m, menor variabilidad, que puede conectarse con las dificultades de detección visual de de las fracturas transversales, sobre todo cuando se produce la saturación de las mismas. Al no estar automatizado este proceso es más subjetivo que AE. Por este motivo, parece más razonable el empleo de monitorización de AE.

Este método se ha aplicado al modelo de FE con elementos cohesivos en la intercara G/C de configuración [G/C2/G] laminado híbrido donde G =S-glass de espesor estándar 0.155 mm and C es carbono/epoxy de SkyFlex USN020 de espesor delgado (0.03 mm) siendo m = 41 un input de modelización. El modelo de longitud 50 mm proporciona 15 fracturas. Se han realizado los cálculos inversos siguiendo el método presentado, se obtiene m = 36.6. Esta variación se puede deber al reducido número de fracturas, inferior a unas 50 obtenidas en el test de fragmentación.

La validación de resultados se realiza mediante el scaled test para las 4 configuraciones indicadas anteriormente. Graficando en escala log-log de la deformación de rotura de carbono versus al volumen de carbono, se obtien e un módulo m=25

El Módulo de Weibull se determina a través de la pendiente de la gráfica en escala log-log. Para muestras de volumen V1 y V2 con deformaciones de rotura εᄌ÷�﾿R? y εᄌ÷�﾿R?   asumiendo igual probabilidad de supervivencia se cumple;

(3)


5 Conclusiones

Se ha propuesto un test de fragmentación con muestras de diseño novedoso que promueve la fragmentación eliminando la delaminación para la determinación de los parámetros de Weibull. Gracias al uso de laminados híbridos se han eliminado las concentraciones de tensiones cerca del amarre, simplicando el ensayo. Los valores del módulo de Weibullf m obtenidos mediante usando AE medio y alto son 25.1 y 24.7, valores muy cercanos al obtenido m = 25 mediante el test escalado. Esto valida experimentalmente los resultados obtenidos en el test de fragmentación propuesto.

Agradecimientos

M. Asun Cantera agradece al Gobierno de España la financiación de la estancia en la Universidad de Bristol a través del programa Castillejo JC 2015-00148. Este trabajo se ha financiado parcialmente por UK Engineering and Physical Sciences Research Council Programme Grant EP/I02946X/1 en High Performance Ductile Composite Technology en colaboración con Imperial College London. Gergely Czél agradece the Hungarian Academy of Sciences por la financiación a través de la beca the János Bolyai y al the Hungarian National Research, Development and Innovation Office - NKFIH por la beca ref. OTKA K 116070 and OTKA PD 121121.

Referencias

1. Andersons J, Joffe R, Hojo M, Ochiai S. Glass fibre strength distribution determined by common experimental methods. Composites Science and Technology, 62(1) , pág. 131-145 (2002).

2. Swolfs Y, Verpoest I, Gorbatikh L. Issues in strength models for unidirectional fibre-reinforced composites related to Weibull distributions, fibre packings and boundary effects. Composites Science and Technology,114, pág. 42-49 (2015).

3. Wisnom MR, Atkinson JW. Reduction in tensile and flexural strength of unidirectional glass fibre-epoxy with increasing specimen size. Composite Structures, 38(1) , pág.405-411(1997).

4. Wisnom MR Mechanisms to create high performance pseudo-ductile composites. IOP Conference Series: Materials Science and Engineering, 139(1) , pág. 012010(2016).

5. Czél G, Jalalvand M, Wisnom MR. Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy–glass/epoxy hybrid composites. Composite Structures,143, pág. 362-370 (2016).

6. Czél G, Jalalvand M, Wisnom MR. Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites. Composites Part A: Applied Science and Manufacturing, 91, Part 2, pág. 436-447(2016).

7. Jalalvand M, Czél G, Wisnom MR. Damage analysis of pseudo-ductile thin-ply UD hybrid composites - A new analytical method. Composites Part A:Applied Science and Manufacturing, 69, pág. 83-93 (2015).

8. Jalalvand M, Czél G, Wisnom MR. Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates. Composites Science and Technology, 94:39-47(2014).

9. Czél G, Jalalvand M, Wisnom MR. Demonstration of pseudo-ductility in unidirectional hybrid composites made of discontinuous carbon/epoxy and continuous glass/epoxy plies. Composites Part A: Applied Science and Manufacturing, 72, pág. 75-84 (2015).

Back to Top
GET PDF

Document information

Published on 20/01/19
Accepted on 20/01/19
Submitted on 20/01/19

Volume 03 - Comunicaciones Matcomp17 (2019), Issue Núm. 1 - Materiales (2), 2019
DOI: 10.23967/r.matcomp.2019.01.007
Licence: Other

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?