Line 1,092: Line 1,092:
 
|}
 
|}
  
==3 Bibliography<!--
+
'''2.2. Applying 2D River model to calculate scour at Cua Dai bridge pier'''
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the document is [1], the second [2], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen
+
  
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to documents published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [1], other publication articles [2], books [3], book chapter [4], conference proceedings [5], and online documents [6], shown in references section below. -->==
+
Applying the program RIVER_2D to calculate the velocity field in Cua Dai bridge area
  
 +
Upstream margin for flow: Q = 13200m<sup>3</sup>/h
  
 +
Downstream margin for water level: Z = 2.83m
  
 +
''Topography at the construction site of Cua Dai bridge in the R2D Bed module in show in figure 1, Topography at the construction site of Cua Dai bridge in the R2D Mesh module in figure 2. The result of  Velocity field at Cua Dai bridge area is showed in figure 3''
  
==4 Acknowledgments<!-- Acknowledgments should be inserted at the end of the document, before the references section. -->==
+
Figure 1 ''Topography at the construction site of Cua Dai bridge in the R2D Bed module''
  
 +
''Figure 2 Topography at the construction site of Cua Dai bridge in the R2D Mesh module''
  
 +
''Figure 3. Velocity field at Cua Dai bridge area''
  
 +
After synthesizing the velocity tables taken from the River 2D program, we get the average velocity table  at the bridge piers as in Table 3.
  
==5 References<!--[1] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Article code. Available: http://www.scipedia.com/ucode.
+
''Table 3 Velocity table taken from river_2D program used to calculate local scour depth.''
 +
{| class="MsoNormalTable"
 +
 +
  |
 +
<nowiki>  </nowiki>Piers
 +
 
 +
  |
 +
<nowiki>  </nowiki>Bottom elevation (m)
 +
 
 +
  |
 +
<nowiki>  </nowiki>Surface elevation (m)
 +
 
 +
  |
 +
<nowiki>  </nowiki>Average velocity
 +
 
 +
 (m/s) 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T3
 +
 
 +
  |
 +
<nowiki>  </nowiki>-0.500
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.546 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T4
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.250
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.173 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T5
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.240
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.583 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T6
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.210
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.391 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T7
 +
 
 +
  |
 +
<nowiki>  </nowiki>-0.960
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.321 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T8
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.420
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.595 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T9
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.720
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.440 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T10
 +
 
 +
  |
 +
<nowiki>  </nowiki>-1.900
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.593 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T11
 +
 
 +
  |
 +
<nowiki>  </nowiki>-2.050
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.251 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T12
 +
 
 +
  |
 +
<nowiki>  </nowiki>-2.540
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.011 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T13
 +
 
 +
  |
 +
<nowiki>  </nowiki>-2.630
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.426 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T14
 +
 
 +
  |
 +
<nowiki>  </nowiki>-3.400
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.175 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T15
 +
 
 +
  |
 +
<nowiki>  </nowiki>-8.150
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.730 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T16
 +
 
 +
  |
 +
<nowiki>  </nowiki>-11.600
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.542 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T17
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.260
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.450 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T18
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.000
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.655 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T19
 +
 
 +
  |
 +
<nowiki>  </nowiki>-0.050
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.410 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T20
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.040
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.957 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T21
 +
 
 +
  |
 +
<nowiki>  </nowiki>-0.040
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.830
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.867 
 +
 +
|}
 +
'''2.3. Applying velocity from River 2D model to calculate scours for Cua Dai bridge pier.'''
  
[2] Author, A. and Author, B. (Year) Title of the article. Title of the Publication. Volume number, first page-last page.
+
The RIVER 2D program uses the main equations to calculate the two shallow water equations, including the equation of continuity and the equation of motion; consider the direction of wind appearing on the surface of the stream, the rotational velocity of the earth; Therefore, it is easy to add these effects to the flow velocity at the pier.
  
[3] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
'''''Determination of local scour depth at bridge piers:''''' 
  
[4] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
Based on the calculation results of the average flow velocity field extracted from the 2D River model. The flow velocity at the bottom of the river is determined by the formula:  
  
[5] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
Where U<sub>bq</sub> is the average flow velocity calculated from the RIVER 2D model, C is the Chezy coefficient. According to Maninh: , n is the coefficient of roughness. The local scour depth for each pier is determined and presented in Table 4.
  
[6] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: http://www.scipedia.com/document.pdf.  
+
''Table 4. Results of local scour calculation with velocity field from River2D''
-->==
+
{| class="MsoNormalTable"
 +
 +
  |
 +
<nowiki>  </nowiki>Piers
 +
 
 +
  |
 +
<nowiki>  </nowiki>Shape factor
 +
 
 +
K<sub>d</sub>
 +
 
 +
  |
 +
<nowiki>  </nowiki>width of pier
 +
 
 +
b (m)
 +
 
 +
  |
 +
<nowiki>  </nowiki>depth of water flow
 +
 
 +
h (m)
 +
 
 +
  |
 +
<nowiki>  </nowiki>velocity
 +
 
 +
V (m/s)
 +
 
 +
  |
 +
<nowiki>  </nowiki>no-  scour velocity Vox (m/s)
 +
 
 +
  |
 +
<nowiki>  </nowiki>Rate
 +
 
 +
V/Vox
 +
 
 +
  |
 +
<nowiki>  </nowiki>maximum local scour depth
 +
 
 +
h<sub>cb</sub> (m) 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T3
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.565
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.546
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.019
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.720
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.475 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T4
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.354
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.173
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.775
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.790
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.988 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T5
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.344
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.583
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.046
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.780
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.419 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T6
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.312
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.391
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.919
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.770
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.238 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T7
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.049
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.321
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.872
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.740
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.211 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T8
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.533
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.595
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.055
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.805
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.388 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T9
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.849
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.440
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.953
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.815
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.226 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T10
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.038
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.593
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.055
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.820
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.376 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T11
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>2
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.196
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.251
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.829
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.825
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.137 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T12
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>4
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.712
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.011
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.670
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.835
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.632 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T13
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>5
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.806
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.426
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.946
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.840
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.947 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T14
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>5
 +
 
 +
  |
 +
<nowiki>  </nowiki>6.617
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.175
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.781
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.860
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.331 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T15
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>5
 +
 
 +
  |
 +
<nowiki>  </nowiki>11.615
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.730
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.156
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.910
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.684 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T16
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>5
 +
 
 +
  |
 +
<nowiki>  </nowiki>15.245
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.542
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.033
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.950
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.179 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T17
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>4
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.713
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.450
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.946
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.650
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.817 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T18
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>2
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.039
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.655
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.431
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.705
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.599 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T19
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.092
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.410
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.928
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.705
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.332 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T20
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.997
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.957
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.629
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.690
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.868 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T21
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.97
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.8
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.081
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.867
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.570
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.700
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.764 
 +
 +
|}
 +
 
 +
3. Results and discussion         
 +
 
 +
The results of the combined scour calculation for the 1D average velocity use case and the velocity use case obtained from the River 2D model are presented in Table 5.
 +
 
 +
''Table 5. Comparison table of calculation results by two methods''
 +
{| class="MsoNormalTable"
 +
 +
  | rowspan="2" |
 +
<nowiki>  </nowiki>Piers
 +
 
 +
  | colspan="2" |
 +
<nowiki>  </nowiki>Flow velocity
 +
 
 +
(m/s)
 +
 
 +
  | colspan="2" |
 +
<nowiki>  </nowiki>Scour depth
 +
 
 +
(m) 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>1D average velocity  method
 +
 
 +
  |
 +
<nowiki>  </nowiki>Velocity from River  2D model
 +
 
 +
  |
 +
<nowiki>  </nowiki>1D average velocity  method
 +
 
 +
  |
 +
<nowiki>  </nowiki>Velocity from River  2D model 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T3
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.019
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.516
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.710 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T4
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.775
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.372
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.262 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T5
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.046
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.402
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.693 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T6
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.919
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.431
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.511 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T7
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.872
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.502
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.470 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T8
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.055
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.345
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.671 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T9
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.953
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.348
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.525 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T10
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.055
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.353
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.684 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T11
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.829
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.551
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.453 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T12
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.670
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.445
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.974 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T13
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.946
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.315
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.293 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T14
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.781
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.298
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.718 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T15
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.156
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.556
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.319 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T16
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.033
 +
 
 +
  |
 +
<nowiki>  </nowiki>5.652
 +
 
 +
  |
 +
<nowiki>  </nowiki>3.994 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T17
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.946
 +
 
 +
  |
 +
<nowiki>  </nowiki>4.891
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.960 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T18
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.431
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.724
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.808 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T19
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.928
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.509
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.544 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T20
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.629
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.553
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.075 
 +
 +
|-
 +
  |
 +
<nowiki>  </nowiki>T21
 +
 
 +
  |
 +
<nowiki>  </nowiki>1.484
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.570
 +
 
 +
  |
 +
<nowiki>  </nowiki>2.526
 +
 
 +
  |
 +
<nowiki>  </nowiki>0.975 
 +
 +
|}
 +
Through the calculation results of general and local scour depth by thinking that the pier scouring velocity is the 1D average or the 2D horizontal velocity (obtained from the application of the RIVER 2D model) shows that: The depth of pier scour by the 1D average velocity gives much larger results than when applying the 2D horizontal velocity to calculate the scour; Theoretically, the calculation results can be reliable and reflect relatively clearly the process of changing surface velocity of the river flow; where the flow velocity is an important parameter in the formula for calculating local scour at the bridge pier. However, the RIVER 2D model also has limitations such as: The RIVER2D model can only determine the 2D velocities on the surface, while the river flow is usually 3D. The vertical flow formed when encountering obstacles such as bridge piers is quite dangerous flow direction. This is one of the main causes of local scour at bridge piers. 
 +
 
 +
4.  Conclusions
 +
 
 +
River flow is a complex physical phenomenon, influenced by factors. The main factors affecting the flow formation process include external conditions such as topography, geomorphology, climate, precipitation, evaporation, wind, tides... and internal conditions such as conduction roughness, fluid viscosity, flow obstructions....
 +
 
 +
The construction of river crossing works often narrows the flow cross-section leading to changes in elevation and slope of the water surface and flow velocity, causing riverbed erosion, especially local scour at bridge piers. Most of the calculation methods given are experimental and semi-empirical formulas built based on actual measurement data or measured data in the laboratory under ideal topographical and geological conditions and 1D flow model. Therefore, the formulas give quite different results and deviate much from reality. In a calculation formula itself, if applied in one condition, it is correct, but in other conditions, the error is too large.
 +
 
 +
  Due to the inability to accurately analyze the causes of scour, scour values, location of scour holes, depth of scour holes, area of scour holes and especially the formation process, development prospects of scour holes, etc., the solutions given to prevent or limit scour development are sometimes very costly but still ineffective.
 +
 
 +
  The use of two-dimensional average velocity, from RIVER 2D model, in the scour calculation formula has overcome the disadvantage compared to using one-dimensional velocity. Calculation results of local scour of Cua Dai bridge piers show that the depth of general and local scour at the construction site, when newly built, is reduced compared to the calculation method using 1D average velocity; even on the entire riverbed section, there are positions where it is accreted but not eroded. From there, appropriate anti-erosion solutions can be devised.
 +
 
 +
  '''Acknowledgments:''' The authors thank the University of Danang, University of Science and Technology for supporting for this work.
 +
 
 +
References
 +
 
 +
[1] E. M. Laursen, A. Toch. (1956) Scour Around Bridge Piers and Abutments
 +
 
 +
[2] Shen, H., Schneider, V.R. and Karaki, S. (1969) Local Scour around Bridge Piers. Journal of the Hydraulics Division, 95, 1919-1940.
 +
 
 +
[3] Richardson, E.V. and Davis, S.R. (2001) Evaluating scour at bridges. 4th Edition, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001.
 +
 
 +
[4] Y. M. Chiew & B. W. Melville (1987). Local scour around bridge piers. Journal of Hydraulic Research, Volume 25, 1987 - Issue 1
 +
 
 +
[5]. Dang Viet Dung (2011), Research and develop a method to calculate local scour at bridge piers'','' PhD thesis, University of Danang (In Vietnamese)
 +
 
 +
[6]. Nguyen The Hung, Nguyen Xuan Truc, Dang Viet Dung (2013).  Applying energy balance conditions for estimating local scour depths at bridge piers, The 14th Asia Congress of Fluid Mechanics - 14ACFM October 15 - 19, Hanoi and Ha Long, Vietnam.
 +
 
 +
[7] O. V. Andreev. (1954) Principles of Designing Regulating Structures [in Russian], VNIIZhSi P, Moscow
 +
 
 +
[8] Nguyen Xuan Truc and Nguyen Huu Khai (1982). Calculation of pier scour (In Vietnamese)

Revision as of 07:40, 29 July 2023

  • Abstract:  When the Cua Dai bridge is built across the Thu Bon River, it causes a narrowing of the flow leading to scour, which seriously threatens the pier and endangers the structure. In order to limit the influence of scour the bridge, it is necessary to ensure that the scour under the bridge is within the allowable range. At the same time, it is necessary to take measures to limit and overcome the causes of scour. Therefore, the study and prediction of locations that are likely to cause scour are of great significance in choosing effective and versatile prevention solutions for works on this river section. Most of the scour formulas for bridge use the 1D average velocity to calculate; The calculated results are much different from the real distribution of flow velocity in the river. Therefore, the results of scour calculation often have big deviations from reality, especially when the river cross-section has no flats or curved rivers... The article focuses on researching scour at the bridge pier based on the two-dimensional horizontal velocity in front of the pier by using RIVER 2D model, built from the mathematical model of two horizontal flows and solved by the finite element method. The results of the paper show that the scour depth of pier by the one-dimensional (1D) average velocity gives much larger than when applying the two-dimensional horizontal velocity to calculate the scour.

Keywords: Scour, 2D average velocity; RIVER 2D model, scour depth

2. Methods of calculating bridge pier scour

2.1 Calculation of pier scour by the method of using 1D average velocity.

General scour.

O.V.Andreev (1955) [7] proposed a method to calculate the maximum general scour under the bridge (lower limit of scour) based on the analysis of the movement of alluvium particles in the mainstream and the river beach below the bridge. In the river beach part under the bridge, scour only starts when the velocity of water flowing under the bridge is greater than the allowed non-scour velocity (vox) of the geological soil layer forming the river beach (vbc>vox) and the scour will stop when the flow rate decreases to the allowed non-scour rate. In the mainstream, the flow rate is always greater than the allowable rate of non- scour of the riverbed’s geological layer and therefore the topsoil layer of the riverbed is always in a state of motion, but the river is not deeply eroded because there is a balance of alluvium along the river. Thus, the flow rate under the bridge is greater than the allowable rate without erosion, which is not the cause of scour in the mainstream and the deformation of the river under the bridge can only be explained by the imbalance of alluvium along the river. The overall scour under the bridge is calculated according to the principle of balance of sediment limit for the mainstream and the flow part with alluvium transport of O.V.Andreev (1955) [7]. The flow depth after scouring is determined according to equation (1) .

Where:

+ Q1=Qch, Q2=Q'ch: Water flow before and after bridge construction at the mainstream.

+ hch, h'ch : Water depth at mainstream before (natural time) and after scouring.

hch = ▼hhm – ▼htbs

▼hhm: Elevation of flow rate at natural time (taken according to design frequency)

▼htbs: average elevation of the riverbed

+ Bch, B'ch: Mainstream width before and after bridge construction.

Bch = L0 = 1657.34m.

B'ch = L = 1401.5 m.

Calculation results of general scour depth according to table 1 Table 1. Table of results for calculating the general scour depth of piers located on the main stream according to the 1D average velocity method.

Bridge Piers

Bottom elevation

(m)

Surface elevation

(m)

Water Depth before scour

hch

(m)

Water Depth after scour

h'ch

(m)

Rising water

(m)

General depth scour (m)

Bottom elevation after local scour (m)

T3

-0.500

2.830

3.330

3.504

0.061

0.235

-0.735

T4

-1.250

2.830

4.080

4.293

0.061

0.274

-1.524

T5

-1.240

2.830

4.070

4.283

0.061

0.274

-1.514

T6

-1.210

2.830

4.040

4.251

0.061

0.272

-1.482

T7

-0.960

2.830

3.790

3.988

0.061

0.259

-1.219

T8

-1.420

2.830

4.250

4.472

0.061

0.283

-1.703

T9

-1.720

2.830

4.550

4.788

0.061

0.299

-2.019

T10

-1.900

2.830

4.730

4.977

0.061

0.308

-2.208

T11

-2.050

2.830

4.880

5.135

0.061

0.316

-2.366

T12

-2.540

2.830

5.370

5.651

0.061

0.342

-2.882

T13

-2.630

2.830

5.460

5.745

0.061

0.346

-2.976

T14

-3.400

2.830

6.230

6.556

0.061

0.387

-3.787

T15

-8.150

2.830

10.980

11.554

0.061

0.635

-8.785

T16

-11.600

2.830

14.430

15.184

0.061

0.815

-12.415

T17

1.260

2.830

1.570

1.652

0.061

0.143

1.117

T18

0.000

2.830

2.830

2.978

0.061

0.209

-0.209

T19

-0.050

2.830

2.880

3.031

0.061

0.212

-0.262

T20

0.040

2.830

2.790

2.936

0.061

0.207

-0.167

T21

-0.040

2.830

2.870

3.020

0.061

0.211

-0.251

Caculating local Scour (p = 1%)

Two authors N.X Truc and N.H. Khai (1982) [8] introduced the formula for determining the largest local scour value at the bridge pier. Based on the research results on the causes and development process of local scour on pier scour models in the hydraulic laboratory and the research results of foreign authors, a reasonable structural form of the local scour calculation formula has been selected. The formula (2) has the following simple form. When v³ vox (for mainstream piers). 

hcb= 0,52.kd.b0,88.h0,12.(V/Vox)1,16                                                                                  (2)

Where:

+ hcb: maximum local scour depth at bridge pier, m 

+ kd: factor taking into account the influence of cylinder shape, taken as  0,1kζ

+ kζ : Iaratslaxev's shape coefficient    

+ h: depth of water flow at bridge pier before local scour, m 

+ V: water velocity at bridge pier before local scour, m/s

+ Vox  : allowable no- scour velocity of the soil layer at the location where scour development  

+ b: calculated width of the cylinder, m

The results of local scour calculation are obtained from Table 2

Table 2. Table of results of calculation of local scour depth of piers located on the main stream according to the average 1D velocity method.

Bridge Piers

Shape factor

Kd

Width of pier

b (m)

Depth of water flow

h (m)

Velocity

V (m/s)

No-scour velocity Vox (m/s)

Ratio

V/Vox

Maximum local scour depth

hcb (m)

T3

0.97

1.8

3.565

1.484

0.720

2.061

2.280

T4

0.97

1.8

4.354

1.484

0.790

1.878

2.097

T5

0.97

1.8

4.344

1.484

0.780

1.903

2.128

T6

0.97

1.8

4.312

1.484

0.770

1.927

2.158

T7

0.97

1.8

4.049

1.484

0.740

2.005

2.243

T8

0.97

1.8

4.533

1.484

0.805

1.843

2.062

T9

0.97

1.8

4.849

1.484

0.815

1.821

2.049

T10

0.97

1.8

5.038

1.484

0.820

1.810

2.044

T11

0.97

2

5.196

1.484

0.825

1.799

2.235

T12

0.97

4

5.712

1.484

0.835

1.777

4.103

T13

0.97

5

5.806

1.484

0.840

1.767

4.969

T14

0.97

5

6.617

1.484

0.860

1.726

4.911

T15

0.97

5

11.615

1.484

0.910

1.631

4.921

T16

0.97

5

15.245

1.484

0.950

1.562

4.837

T17

0.97

4

1.713

1.484

0.650

2.283

4.748

T18

0.97

2

3.039

1.484

0.705

2.105

2.515

T19

0.97

1.8

3.092

1.484

0.705

2.105

2.297

T20

0.97

1.8

2.997

1.484

0.690

2.151

2.346

T21

0.97

1.8

3.081

1.484

0.700

2.120

2.315

2.2. Applying 2D River model to calculate scour at Cua Dai bridge pier

Applying the program RIVER_2D to calculate the velocity field in Cua Dai bridge area

Upstream margin for flow: Q = 13200m3/h

Downstream margin for water level: Z = 2.83m

Topography at the construction site of Cua Dai bridge in the R2D Bed module in show in figure 1, Topography at the construction site of Cua Dai bridge in the R2D Mesh module in figure 2. The result of Velocity field at Cua Dai bridge area is showed in figure 3

Figure 1 Topography at the construction site of Cua Dai bridge in the R2D Bed module

Figure 2 Topography at the construction site of Cua Dai bridge in the R2D Mesh module

Figure 3. Velocity field at Cua Dai bridge area

After synthesizing the velocity tables taken from the River 2D program, we get the average velocity table  at the bridge piers as in Table 3.

Table 3 Velocity table taken from river_2D program used to calculate local scour depth.

Piers

Bottom elevation (m)

Surface elevation (m)

Average velocity

 (m/s)

T3

-0.500

2.830

1.546

T4

-1.250

2.830

1.173

T5

-1.240

2.830

1.583

T6

-1.210

2.830

1.391

T7

-0.960

2.830

1.321

T8

-1.420

2.830

1.595

T9

-1.720

2.830

1.440

T10

-1.900

2.830

1.593

T11

-2.050

2.830

1.251

T12

-2.540

2.830

1.011

T13

-2.630

2.830

1.426

T14

-3.400

2.830

1.175

T15

-8.150

2.830

1.730

T16

-11.600

2.830

1.542

T17

1.260

2.830

1.450

T18

0.000

2.830

0.655

T19

-0.050

2.830

1.410

T20

0.040

2.830

0.957

T21

-0.040

2.830

0.867

2.3. Applying velocity from River 2D model to calculate scours for Cua Dai bridge pier.

The RIVER 2D program uses the main equations to calculate the two shallow water equations, including the equation of continuity and the equation of motion; consider the direction of wind appearing on the surface of the stream, the rotational velocity of the earth; Therefore, it is easy to add these effects to the flow velocity at the pier.

Determination of local scour depth at bridge piers: 

Based on the calculation results of the average flow velocity field extracted from the 2D River model. The flow velocity at the bottom of the river is determined by the formula:  

Where Ubq is the average flow velocity calculated from the RIVER 2D model, C is the Chezy coefficient. According to Maninh: , n is the coefficient of roughness. The local scour depth for each pier is determined and presented in Table 4.

Table 4. Results of local scour calculation with velocity field from River2D

Piers

Shape factor

Kd

width of pier

b (m)

depth of water flow

h (m)

velocity

V (m/s)

no- scour velocity Vox (m/s)

Rate

V/Vox

maximum local scour depth

hcb (m)

T3

0.97

1.8

3.565

1.546

1.019

0.720

1.475

T4

0.97

1.8

4.354

1.173

0.775

0.790

0.988

T5

0.97

1.8

4.344

1.583

1.046

0.780

1.419

T6

0.97

1.8

4.312

1.391

0.919

0.770

1.238

T7

0.97

1.8

4.049

1.321

0.872

0.740

1.211

T8

0.97

1.8

4.533

1.595

1.055

0.805

1.388

T9

0.97

1.8

4.849

1.440

0.953

0.815

1.226

T10

0.97

1.8

5.038

1.593

1.055

0.820

1.376

T11

0.97

2

5.196

1.251

0.829

0.825

1.137

T12

0.97

4

5.712

1.011

0.670

0.835

1.632

T13

0.97

5

5.806

1.426

0.946

0.840

2.947

T14

0.97

5

6.617

1.175

0.781

0.860

2.331

T15

0.97

5

11.615

1.730

1.156

0.910

3.684

T16

0.97

5

15.245

1.542

1.033

0.950

3.179

T17

0.97

4

1.713

1.450

0.946

0.650

2.817

T18

0.97

2

3.039

0.655

0.431

0.705

0.599

T19

0.97

1.8

3.092

1.410

0.928

0.705

1.332

T20

0.97

1.8

2.997

0.957

0.629

0.690

0.868

T21

0.97

1.8

3.081

0.867

0.570

0.700

0.764

3. Results and discussion         

The results of the combined scour calculation for the 1D average velocity use case and the velocity use case obtained from the River 2D model are presented in Table 5.

Table 5. Comparison table of calculation results by two methods

Piers

Flow velocity

(m/s)

Scour depth

(m)

1D average velocity method

Velocity from River 2D model

1D average velocity method

Velocity from River 2D model

T3

1.484

1.019

2.516

1.710

T4

1.484

0.775

2.372

1.262

T5

1.484

1.046

2.402

1.693

T6

1.484

0.919

2.431

1.511

T7

1.484

0.872

2.502

1.470

T8

1.484

1.055

2.345

1.671

T9

1.484

0.953

2.348

1.525

T10

1.484

1.055

2.353

1.684

T11

1.484

0.829

2.551

1.453

T12

1.484

0.670

4.445

1.974

T13

1.484

0.946

5.315

3.293

T14

1.484

0.781

5.298

2.718

T15

1.484

1.156

5.556

4.319

T16

1.484

1.033

5.652

3.994

T17

1.484

0.946

4.891

2.960

T18

1.484

0.431

2.724

0.808

T19

1.484

0.928

2.509

1.544

T20

1.484

0.629

2.553

1.075

T21

1.484

0.570

2.526

0.975

Through the calculation results of general and local scour depth by thinking that the pier scouring velocity is the 1D average or the 2D horizontal velocity (obtained from the application of the RIVER 2D model) shows that: The depth of pier scour by the 1D average velocity gives much larger results than when applying the 2D horizontal velocity to calculate the scour; Theoretically, the calculation results can be reliable and reflect relatively clearly the process of changing surface velocity of the river flow; where the flow velocity is an important parameter in the formula for calculating local scour at the bridge pier. However, the RIVER 2D model also has limitations such as: The RIVER2D model can only determine the 2D velocities on the surface, while the river flow is usually 3D. The vertical flow formed when encountering obstacles such as bridge piers is quite dangerous flow direction. This is one of the main causes of local scour at bridge piers. 

4.  Conclusions

River flow is a complex physical phenomenon, influenced by factors. The main factors affecting the flow formation process include external conditions such as topography, geomorphology, climate, precipitation, evaporation, wind, tides... and internal conditions such as conduction roughness, fluid viscosity, flow obstructions....

The construction of river crossing works often narrows the flow cross-section leading to changes in elevation and slope of the water surface and flow velocity, causing riverbed erosion, especially local scour at bridge piers. Most of the calculation methods given are experimental and semi-empirical formulas built based on actual measurement data or measured data in the laboratory under ideal topographical and geological conditions and 1D flow model. Therefore, the formulas give quite different results and deviate much from reality. In a calculation formula itself, if applied in one condition, it is correct, but in other conditions, the error is too large.

  Due to the inability to accurately analyze the causes of scour, scour values, location of scour holes, depth of scour holes, area of scour holes and especially the formation process, development prospects of scour holes, etc., the solutions given to prevent or limit scour development are sometimes very costly but still ineffective.

  The use of two-dimensional average velocity, from RIVER 2D model, in the scour calculation formula has overcome the disadvantage compared to using one-dimensional velocity. Calculation results of local scour of Cua Dai bridge piers show that the depth of general and local scour at the construction site, when newly built, is reduced compared to the calculation method using 1D average velocity; even on the entire riverbed section, there are positions where it is accreted but not eroded. From there, appropriate anti-erosion solutions can be devised.

  Acknowledgments: The authors thank the University of Danang, University of Science and Technology for supporting for this work.

References

[1] E. M. Laursen, A. Toch. (1956) Scour Around Bridge Piers and Abutments

[2] Shen, H., Schneider, V.R. and Karaki, S. (1969) Local Scour around Bridge Piers. Journal of the Hydraulics Division, 95, 1919-1940.

[3] Richardson, E.V. and Davis, S.R. (2001) Evaluating scour at bridges. 4th Edition, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001.

[4] Y. M. Chiew & B. W. Melville (1987). Local scour around bridge piers. Journal of Hydraulic Research, Volume 25, 1987 - Issue 1

[5]. Dang Viet Dung (2011), Research and develop a method to calculate local scour at bridge piers, PhD thesis, University of Danang (In Vietnamese)

[6]. Nguyen The Hung, Nguyen Xuan Truc, Dang Viet Dung (2013).  Applying energy balance conditions for estimating local scour depths at bridge piers, The 14th Asia Congress of Fluid Mechanics - 14ACFM October 15 - 19, Hanoi and Ha Long, Vietnam.

[7] O. V. Andreev. (1954) Principles of Designing Regulating Structures [in Russian], VNIIZhSi P, Moscow

[8] Nguyen Xuan Truc and Nguyen Huu Khai (1982). Calculation of pier scour (In Vietnamese)

Back to Top

Document information

Published on 24/11/23
Accepted on 30/10/23
Submitted on 31/07/23

Volume 39, Issue 4, 2023
DOI: 10.23967/j.rimni.2023.10.009
Licence: CC BY-NC-SA license

Document Score

0

Views 173
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?