You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<span id='_Hlk175065085'></span><div id="_Hlk177576425" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
5
<big>'''Analysis of Airflow Uniformity in Pig Nurseries Using Duct Ventilation in Northeast China'''</big></div>
6
7
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
8
<span style="text-align: center; font-size: 75%;">Zhidong Wu<sup>1</sup><sup>, 2, 3</sup><sup>*</sup>, Kaixiang Xu<sup>1</sup>, Yanwei Chen<sup>1</sup>, Yonglan Liu<sup>1</sup>, and Meiqi Liu<sup>1</sup></span></div>
9
10
1 School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar, 161006, China
11
12
2 The Engineering Technology Research Center for Precision Manufacturing Equipment and Industrial Perception of Heilongjiang Province, Qiqihar, 161006, China
13
14
3 Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
15
16
*Corresponding Author: Zhidong Wu. Email: [mailto:wzd139446@163.com wzd139446@163.com]
17
18
Received: 19 July 2024; Accepted: 10 October 2024
19
-->
20
21
==ABSTRACT==
22
23
The problem of uneven ventilation in pig houses must be solved to effectively improve the winter environmental quality of pig nurseries in cold regions. In this study, the airflow field and airflow uneven coefficients of pig nurseries with duct ventilation were simulatedand calculated using computational fluid dynamics, and compared with pig nurseries with different duct diameters, inlet and outlet air velocities and air supply angles. The average relative error between the simulated and measured values was 12%. Comparison of simulation results and airflow uneven coefficients showed that the airflow uneven coefficients of the fences were reduced, and the airflow field was uniformly distributed with a duct diameter of 0.3 m, inlet and outlet air velocities of 1.5 and 2.0 m/s, respectively, and an air supply angle of 45°. These improvements resulted in a more homogeneous ventilation, which led to more uniform ventilation and contributed to discharging dirty air outdoors. Then the test pig nursery was modified based on the simulation and analysis results. Difference analyses were carried out between the control and the test pig nurseries. Comparative analyses showed the differences between the test data and the monitoring data were smaller, and the duct ventilation was more uniform, which was suitable for the healthy growth of piglets.
24
25
Keywords: Pig nursery; Airflow field; Numerical simulation; Duct Ventilation
26
27
==1. Introduction==
28
29
Northeastern China is distinguished by its extensive land resource base and ample provision of feed resources, which are conducive to the flourishing growth of the swine farming sector [1]. However, because of the cold and long winter in this region, most pig nurseries have little or no ventilation in winter to avoid cold stress on pigs and reduce energy consumption [2-4]. If only thermal insulation and reduced ventilation are considered, harmful indoor gases (e.g., ammonia, hydrogen sulfide, and carbon dioxide) and excessive moisture and dust interfere with the healthy growth of pigs and largely harm the health of breeders [5-6]. Therefore, innovative design of ventilation systems to guarantee the environmental quality of pig nurseries in cold regions is crucial for healthy breeding of pigs.
30
31
The engineering equipment and technology used in pig-raising facilities are always improving with the increasing demands from the global pig-raising industry. A single ventilation mode (e.g., longitudinal, horizontal, or vertical mode) can no longer meet the needs of healthy pig production. Hence, the basic theory of ventilation and the innovation of ventilation modes need to be studied further [7]. Li et al. analytically tested the effects of two ventilation modes on the indoor environment of a large pig nursery house in Guangxi in winter [8]. The environmental quality of the nursery house with the underground duct air intake mode was better compared with the ceiling air intake mode [8]. In southern China, the cold air temperature in winter is generally not lower than 0 ℃, so the two modes are more suitable for farm buildings, and the outside fresh air can directly enter the buildings. However, in Northeast China, due to the low winter temperature, tunnel ventilation will bring in abundant cold air and rapidly decrease the temperature inside the barn, which will induce cold stress on piglets and may cause ice formation in the faecal tract, so that faeces cannot be discharged normally. Kwon et al. simulated and studied the ducted exhaust system of a nursery pig house based on the computational fluid dynamics (CFD) theory, and found this system effectively improved the environmental quality of the pig house [9]. Compared with the above ventilation modes, evenly-arranged air vents are more suitable for both cold and hot areas [10]. At the same time, the ducted ventilation model introducing fresh air into a sealed space in the form of supply air facilitates air heating, filtering, cooling, and other treatments. Additional ducts can be installed and ventilation openings be evenly distributed along the duct walls to ensure an even distribution of airflow within the space [11]. Moreover, exhaust air ventilation removes polluted air from the enclosed environment quickly and expels it outdoors. However, areas with poor airflow circulation or variations in airflow velocity are prone to dead zones or cross drafts [12]. The combined supply and exhaust air system can effectively integrate the advantages of both supply air and exhaust air ventilation, and thus improves ventilation efficiency and facilitates precise environment control in weaned pig nurseries [13]. This system combines the benefits of both supply air and exhaust air, allows for efficient air exchange and meets the specific requirements for maintaining the optimal environment for pigs. The duct ventilating mode better ensures consistent ventilation in a pig nursery and helps accurately control ventilation [14-15].
32
33
The design of ventilation structures requires much field test data, but the pig nursery is restricted by a complicated environment and only a few monitoring points. At the same time, the environmental conditions cannot be stable and controllable for long periods, which leads to large margins of errors. Application and research with the CFD technology can accurately simulate the distribution laws of temperature and airflow fields in livestock and poultry houses, and theoretically underlie the optimization of ventilation structures [16-18]. Five two-way turbulence models were utilized to model a mechanically ventilated pig nursery and predict the airflow distribution in the pigsty. The choice of the turbulence model depended on the specific situation [19]. CFD-based simulation of airflow in pregnant sow barns under centralized ventilation revealed that the temperature field uniformity increased when the air outlet was located in the middle of the enclosure and that changes in the ventilation structure caused changes in the airflow field distribution in the pig nursery [20]. The effects of air inlet on airflow and temperature in a summer laying hen house were investigated using CFD, and the uniformity of airflow and temperature distributions increased with the location of air inlet and the distance from the hen house [21]. After the conditions of air inlet and outlet were optimized through CFD simulation, the environmental quality of the house was improved and the cold stress of pigs in winter was effectively alleviated [22]. CFD was used to study the influence of wind speed on temperature fields in pigsties and the influence of pigsty structural changes on airflow fields, and the results theoretically underlay the optimization of an environmental control scheme [23]. Based on the above research methods, CFD was used to simulate the airflow field in a pig nursery under duct ventilation, and the simulation results were analyzed, which provide a reference basis for optimal ventilation system design and on-site renovation.
34
35
In this study, the theory of duct uniform ventilation and the factors affecting uniform air supply were analyzed, and a CFD model of a pig nursery under the duct ventilation mode was built on basis of field measurement data. The model was used to simulate the airflow field under different duct diameters, inlet and outlet air velocities, and air inlet angles, and analyze the influence of the ventilation structure on the airflow field. Then the main parameters of the ventilation structure were selected, and reference data were provided for ventilation structure optimization and on-site renovation. This study has a certain reference value for the construction of large-scale pig nurseries in cold areas to improve the pig nursery rearing environment and pig breeding quality.
36
37
==2. MATERIALS AND METHODS==
38
39
===2.1 Test pig nursery===
40
41
The test-simulated pig nursery was located in Qiqihar, Heilongjiang Province, China (47°44’ N,124°04’ E). In this region, the average maximum and minimum temperatures are 27.3 and 18 ℃ respectively in summer, and -10.7 and -21.7 ℃ respectively in winter. Figure 1a shows the status of the pig nursery. The pig nursery was 17 m long, 10 m wide, and 3 m from the roof to the shed. There were 12 fences in two columns. Each fence was 3.5 m long and 2.5 m wide and housed 10 to 12 piglets. The fence floor was 0.5 m away from the cement floor of the pig nursery and was composed of the slatted floor and the heated cement floor. The gap width of the floor for the slatted floor was 15 mm. Figure 1b shows the three-dimensional effect diagram of the renovated pig nursery.
42
43
44
[[File:Draft_Sanchez_Pinedo_108263404_1704_fig_1.JPG|center|750px]]
45
<span style="text-align: center; font-size: 75%;">'''Figure 1. The pig nursery in the field experiment; (a) floor plan; (b) three-dimensional effect diagram of the renovated pig nursery (two lines of ducts for both air inlet and air outlet; six air inlets or outlets in each row)'''</span>
46
47
<span id='_Hlk175335794'></span>
48
49
===2.2 Model parameter measurement===
50
51
The neighboring pig nursery was selected as the control, which had the same structure and layout as the test pig nursery before the renovation. On-site measurements were conducted from December 2019 to January 2020. Sensor monitoring nodes were arranged in the same way as shown in Figure 1. The monitoring data were extracted from the test and control pig nurseries at a 15-minute interval. Then groups of data were sampled continuously for a single monitoring data, and then the average value was recorded. To ensure the validity of data comparison and analysis results, the processes of heating, feeding, and manure cleaning during the monitoring period were kept the same in the two nurseries. The ventilation time of the two nurseries for duct ventilation and ventilation opening of the door and window on one side of the corridor is shown in Table 1. Real-time temperature, humidity, CO<sub>2</sub>, and NH<sub>3</sub> in the existing ventilation mode of the pig nursery were monitored. The monitoring equipment used at the site is listed in Table 2.
52
53
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
54
<span style="text-align: center; font-size: 75%;">Table 1. Opening time of duct ventilation and door / window ventilation</span></div>
55
56
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
57
|-
58
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Ventilation method and 
59
duration</span>
60
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Duration of door 
61
opening in two nurseries /(min)</span>
62
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Duration of window 
63
opening in two nurseries /(min)</span>
64
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Duration of ducted air
65
exchange in the test pig nursery /(min)</span>
66
|-
67
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">07:35</span>
68
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1</span>
69
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">5</span>
70
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
71
|-
72
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">10:00</span>
73
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">10</span>
74
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">20</span>
75
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
76
|-
77
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">12:00</span>
78
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">10</span>
79
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">120</span>
80
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
81
|-
82
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">12:35</span>
83
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
84
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
85
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">4</span>
86
|-
87
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">16:00</span>
88
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">5</span>
89
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">30</span>
90
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
91
|-
92
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">17:54</span>
93
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
94
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
95
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">6</span>
96
|-
97
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">22:40</span>
98
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">5</span>
99
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">20</span>
100
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;"></span>
101
|}
102
103
104
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
105
<span style="text-align: center; font-size: 75%;">Table 2. Opening time of duct ventilation and door / window ventilation</span></div>
106
107
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
108
|-
109
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Name</span>
110
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Type</span>
111
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Company</span>
112
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Range</span>
113
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Precision</span>
114
|-
115
|  rowspan='2' style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Humidity and temperature measuring instrument</span>
116
|  rowspan='2' style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Testo 625</span>
117
|  rowspan='2' style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Testo Group, Black</span>
118
119
<span style="text-align: center; font-size: 75%;"> Forest, Germany</span>
120
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Temperature: -10 - 60 ℃</span>
121
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">± 0.5 °C</span>
122
|-
123
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Humidity:0~100%</span>
124
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">±2.5 %</span>
125
|-
126
|  rowspan='2' style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Pump gas detector</span>
127
|  rowspan='2' style="text-align: center;"|<span style="text-align: center; font-size: 75%;">HYE 2000</span>
128
|  rowspan='2' style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Taizhou HanYao Electronic Technology Co., Taizhou, China</span>
129
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">CO<sub>2</sub>: 0 - 5398 mg/m<sup>3</sup></span>
130
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">±1 mg/m³</span>
131
|-
132
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">NH<sub>3</sub>: 0 - 69 mg/m<sup>3</sup></span>
133
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">±0.1 mg/m<sup>3</sup></span>
134
|-
135
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Thermal anemometer</span>
136
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Testo 425</span>
137
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Testo Group, Germany</span>
138
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">0.01 - 30 m/s</span>
139
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">±(0.03 m/s +4.0 %)</span>
140
|}
141
142
<br>
143
144
A total of sensor nodes were placed inside the pig nurseries at a height corresponding to the breathing level of the weaned pigs (0.2 m above the slatted floor). The environmental data obtained at this height can represent the quality of exhaled air by weaned pigs.
145
146
===2.3 Governing equations===
147
148
Fluid flow in nursery in the pig nursery obeys the laws of conservation of mass, momentum and energy and the law of composition. The governing equations are as follows [24]:
149
150
Mass conservation:
151
152
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
153
|-
154
| 
155
{| style="text-align: right;margin:auto;width: 100%;"
156
|-
157
| 
158
|}
159
| 
160
{| style="text-align: center;margin:auto;width: 100%;"
161
|-
162
| <big> <math display="inline">\frac{\partial \rho u}{\partial x}+\frac{\partial \rho v}{\partial y}+</math><math>\frac{\rho w}{\partial z}=0</math> </big>
163
|}
164
|  style="text-align: right;width: 5px;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(1)</span>
165
|}
166
167
168
Energy conservation:
169
170
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
171
|-
172
| 
173
{| style="vertical-align: top;margin:auto;width: 100%;"
174
|-
175
| 
176
|}
177
| 
178
{| style="text-align: center;vertical-align: top;margin:auto;width: 100%;"
179
|-
180
| <big> <math display="inline">\begin{array}{c}
181
\frac{\partial (\rho T)}{\partial t}+\frac{\partial (\rho uT)}{\partial x}+\frac{\partial (\rho vT)}{\partial y}+\frac{\partial (\rho wT)}{\partial z}\\
182
=\frac{\partial }{\partial x}(\frac{k}{c_p}\frac{\partial T}{\partial x})+\frac{\partial }{\partial y}(\frac{k}{c_p}\frac{\partial T}{\partial y})+\frac{\partial }{\partial z}(\frac{k}{c_p}\frac{\partial T}{\partial z})+S_T
183
\end{array}</math> </big>
184
|}
185
|  style="text-align: right;width: 5px;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(2)</span>
186
|}
187
188
189
Momentum conservation:
190
191
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
192
|-
193
| 
194
{| style="vertical-align: top;margin:auto;width: 100%;"
195
|-
196
| 
197
|}
198
| 
199
{| style="vertical-align: top;margin:auto;width: 100%;"
200
|-
201
| [[File:Draft_Sanchez_Pinedo_108263404_7266_eq_3.JPG|310px]] 
202
|}
203
|  style="text-align: right;width: 5px;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(3)</span>
204
|}
205
206
207
Conservation of composition:
208
209
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
210
|-
211
| 
212
{| style="vertical-align: top;margin:auto;width: 100%;"
213
|-
214
| 
215
|}
216
| 
217
{| style="vertical-align: top;margin:auto;width: 100%;"
218
|-
219
| <big> <math display="inline">\begin{array}{c}
220
\frac{\partial (\rho c_s)}{\partial t}+\frac{\partial (\rho uc_s)}{\partial x}+\frac{\partial (\rho vc_s)}{\partial y}+\frac{\partial (\rho wc_s)}{\partial z}\\
221
=\frac{\partial }{\partial x}(D_s\frac{\partial (\rho c_s)}{\partial x})+\frac{\partial }{\partial y}(D_s\frac{\partial (\rho c_s)}{\partial y})+\frac{\partial }{\partial z}(D_s\frac{\partial (\rho c_s)}{\partial z})
222
\end{array}</math> </big>
223
|}
224
|  style="text-align: right;width: 5px;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(4)</span>
225
|}
226
227
228
where ''ρ'' is the fluid density, kg/m<sup>3</sup>; ''u'', ''v'', and ''w'' are the velocity vectors in the direction of x, y, and z, respectively, m/s; ''k'' is the heat transfer coefficient,  <math display="inline">W/\left(m\cdot K\right)</math> , ''T'' is the thermodynamic temperature, K; ''C<sub>P</sub> ''is the specific heat capacity,  <math display="inline">J/\left(kg\cdot K\right)</math> ,  <math display="inline">S_T</math> is the internal heat source, W; ''P'' is the pressure fluid microelement, Pa; ''C''<sub>s</sub> is the volume concentration of component ''s'', kg/kg; ''D<sub>s</sub>'' is the diffusion coefficient of component ''s'', m<sup>2</sup>/s.
229
230
===2.4 Pig nursery model===
231
232
The pig nursery has a symmetrical structure. To improve computational efficiency and save computer simulation time, a half-scale physical model of the nursery house was created and the rest of the house was symmetrical. For simplification of modeling, the effects of fences, slatted floor and piglets on the airflow in the house were ignored (Figure 2). The air inlet was 0.9 m above the concrete floor, and the middle aisle was the air outlet and was 0.4 m from the ground.
233
234
235
[[File:Draft_Sanchez_Pinedo_108263404_4043_fig_2.JPG|center|600px]]
236
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
237
<span style="text-align: center; font-size: 75%;">'''Figure 2. Model of pig nursery'''</span></div>
238
239
===2.5 Boundary conditions and numerical calculation===
240
241
The air in the pig nursery was an incompressible ideal gas, and the fences, ducts, and walls were all non-slip wall boundaries. The walls on both sides were set as symmetric boundary conditions without friction or energy flow. The outlet and inlet of the air duct were arranged as the velocity inlet and outlet respectively. The simulation was conducted under a steady-state. Bjerg et al. showed that CFD simulations of livestock buildings using a standard k-ε turbulence model resulted in the smallest absolute and relative errors between simulation and monitoring results [25]. The standard k- ε turbulence model was selected. Standard wall functions were used for simulations near the wall. The control equation was discretized using the finite volume method. The SIMPLEC algorithm with good convergence was used to solve the pressure velocity coupling equation [26]. The initial boundary conditions were listed in Table 3 [27]. The solution was assumed to converge when the sum of residuals for all cells in the computational domain was less than 1×10<sup>-6</sup> for continuity and energy, and 1×10<sup>-3</sup> for other variables such as X-, Y-, Z-velocity, k, and ε.
242
243
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
244
<span style="text-align: center; font-size: 75%;">'''Table 3. Boundary conditions for the CFD simulation model'''</span></div>
245
246
{| style="width: 38%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
247
|-
248
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Items</span>
249
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Boundary conditions</span>
250
|-
251
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Inlet</span>
252
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Velocity inlet (0.5 m/s, 20 ℃)</span>
253
|-
254
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Outlet</span>
255
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Velocity outlet (1 m/s)</span>
256
|-
257
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Floor</span>
258
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Non-slip wall, 12 ℃</span>
259
|-
260
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">North wall</span>
261
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Non-slip wall, 18 ℃</span>
262
|-
263
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">South wall</span>
264
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Non-slip wall, 15 ℃</span>
265
|-
266
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Roof</span>
267
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Non-slip wall, 16 ℃</span>
268
|}
269
270
271
===2.6 Evaluation Indicators===
272
273
The main factors affecting the ventilation are duct diameter (''D''), air inlet angle (''A''), air inlet velocity (''v<sub>in</sub>''), and air inlet velocity (''v<sub>out</sub>'') [28-29]. The values of ''D'', ''A'', and ''v'' were changed to simulate the airflow field in the pig nursery while boundary conditions, initial conditions, and other relevant parameters were the same.
274
275
In general, the piglets were 0.4 m high, so the cross-section of the airflow field was selected as the backplane of the piglets. The suitable air velocity for a pig nursery is 0.2 - 0.3 m/s, and uniform ventilation must be ensured. Airflow uniformity in pig nurseries was assessed using the airflow uneven coefficient [30]. With the fence as the unit, 10 points from each unit of F1 - F6 were taken to read the air velocity evenly as the air dispersed, and the ''J<sub>h</sub>'' of each case was calculated. Smaller ''J<sub>h</sub>''implies the ventilation in the pig nursery is more uniform. The airflow uneven coefficient of the cross-section at height ''h'' in the pig nursery (''J<sub>h</sub>''), and the average air velocity of the cross-section at height ''h'' (''v<sub>h</sub>'', m/s) are calculated as follows:
276
277
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
278
|-
279
| 
280
{| style="text-align: center;margin:auto;width: 100%;"
281
|-
282
| 
283
|}
284
| 
285
{| style="text-align: center;margin:auto;width: 100%;"
286
|-
287
| <math display="inline">J_h=\frac{\sqrt{\frac{\sum_{i=1}^n{\left(v_i-v_h\right)}^2}{n}}}{v_h}</math> 
288
|}
289
|  style="text-align: right;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(5)</span>
290
|}
291
292
293
{| class="formulaSCP" style="width: 100%;border-collapse: collapse;width: 100%;text-align: center;" 
294
|-
295
| 
296
{| style="text-align: center;margin:auto;width: 100%;"
297
|-
298
| 
299
|}
300
| 
301
{| style="text-align: center;margin:auto;width: 100%;"
302
|-
303
| <math display="inline">v_h=\frac{1}{n}\sum_{i=1}^nv_i</math> 
304
|}
305
|  style="text-align: right;text-align: right;white-space: nowrap;"|<span style="text-align: center; font-size: 75%;">(6)</span>
306
|}
307
308
309
where ''v<sub>i</sub>'' is the air velocity of monitoring point ''i'', m/s; ''n ''is the number of monitoring points.
310
311
==3. RESULTS AND DISCUSSION==
312
313
===3.1 Model validation===
314
315
====3.1.1 Grid independence validation====
316
317
The efficiency of calculations is affected by the number of grids and can be improved by choosing the appropriate grid number. The results for certain characteristic physical quantities obtained with a particular grid size stabilize when the variability of the results due to an increase in grid number is acceptable. Unstructured grids with high flexibility are often used to simulate airflow [31].
318
319
Three different grids were used for independence tests, and the changing trends of wind speed were similar among the different grids, except that the wind speeds were different. The average wind speed of monitoring points 1-4 in F1 was taken as the reference. The maximum relative errors of coarse, normal and fine grids from the simulation results were 10.4%, 4.25% and 3.96%, respectively (Table 4). The wind speed fluctuation amplitude of a normal grid or a fine grid was very small, and did not largely impact the results. At the same time, computer performance and time cost were comprehensively considered during simulation and analysis with normal grid number.
320
321
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
322
<span style="text-align: center; font-size: 75%;">'''Table 4. Grid independence validation'''</span></div>
323
324
{| style="width: 74%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
325
|-
326
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|
327
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Number of grids</span>
328
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Average wind speed (m·s<sup>-1</sup>)</span>
329
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Relative error (%)</span>
330
|-
331
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Grid 1 (Coarse)</span>
332
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">538,527</span>
333
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">0.1053</span>
334
|  style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">10.4</span>
335
|-
336
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">Grid 2 (Normal)</span>
337
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">1,463,425</span>
338
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">0.1125</span>
339
|  style="text-align: center;"|<span style="text-align: center; font-size: 75%;">4.25</span>
340
|-
341
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Grid 3 (Fine)</span>
342
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2,325,956</span>
343
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">0.1128</span>
344
|  style="border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">3.96</span>
345
|}
346
347
348
====3.1.2 CFD model validation====
349
350
Based on the simulation of airflow field, the 0.4 m high section in the living area of piglets was chosen. Four test points were selected for each fence to monitor air velocity, which was compared to the simulation data at the same location. The data curves are shown in Figure 3. As the south fence was close to the window, external air entered the pig nursery through the gaps in the windows. As a result, the monitored air velocity and the simulated air velocity from monitoring points 21 to 24 were largely different. For the other 20 monitoring points, the relative errors calculated using the relative error formula were between 0 and 0.2, and the average error was 11.79%. These results indicate the simulation results agree well with the monitoring data, and the simulations are effective.
351
352
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
353
[[Image:Draft_Sanchez Pinedo_108263404-image13-c.png|center|600px]] </div>
354
355
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
356
<span style="text-align: center; font-size: 75%;">'''Figure 3. Comparison of simulated and monitored air velocities'''</span></div>
357
358
===3.2 Influence of duct diameter on simulation results===
359
360
When the air velocity was constant, the cross-sectional area of the duct was the main factor affecting the ventilation rate in unit time. At the same time, the duct diameter directly affected both the area and construction cost of the pig nursery. After comprehensive consideration, the ducts with diameters ''D''<sub></sub>= 0.2 m, ''D''<sub></sub>= 0.3 m and ''D''<sub></sub>= 0.4 m were selected for simulation. The ducts were perpendicular to the horizontal plane, and the inlet and outlet air velocities were set as ''v<sub>in </sub>''= 1.0 m/s and ''v<sub>out</sub>''= -1.5 m/s, respectively.
361
362
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
363
[[File:Draft_Sanchez_Pinedo_108263404_6787_fig_4a.JPG|400px|center]] </div>
364
365
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
366
<span style="text-align: center; font-size: 75%;">(a)</span></div>
367
368
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
369
[[File:Draft_Sanchez_Pinedo_108263404_3873_fig_4b.JPG|400px|center]] </div>
370
371
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
372
<span style="text-align: center; font-size: 75%;">(b)</span></div>
373
374
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
375
[[File:Draft_Sanchez_Pinedo_108263404_8746_fig_4c.JPG|400px|center]] </div>
376
377
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
378
<span style="text-align: center; font-size: 75%;">(c)</span></div>
379
380
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
381
<span style="text-align: center; font-size: 75%;">'''Figure 4. Airflow field at different duct diameters. (a) D<sub>1 </sub>= 0.2 m; (b) D<sub>2 </sub>= 0.3 m; (c) D<sub>1 </sub>= 0.4 m'''</span></div>
382
<br>
383
Figure 4 reveals the changing rules of airflow field corresponding to different duct diameters. The air velocities of middle fences F3 and F4 were higher than those of other fences. The reason for this phenomenon is that the static pressure of the fluid inside the ventilation duct gradually increases along the flow direction. In contrast, the dynamic pressure decreases near the fence, resulting in higher outlet speeds at the rear end compared to the front end[32-33]. When the duct diameter increased from 0.2 to 0.4 m, the airflow field distribution was more uniform, but the maximum local air velocity reached 0.39 m/s, which exceeded the ventilation requirement for piglets. At the same time, many weak ventilation areas existed in the pig nursery, and the air velocity on the side of slatted floor was generally low.
384
385
The variation curves of airflow uneven coefficient ''J<sub>0.4</sub>'' for each fence calculated from Eqs. (5) and (6) are shown in Figure 5.
386
387
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
388
 [[Image:Draft_Sanchez Pinedo_108263404-image17.png|270px]] </div>
389
390
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
391
<span style="text-align: center; font-size: 75%;">'''Figure 5. Effects of duct diameters on airflow uneven coefficient'''</span></div>
392
393
The uneven coefficient ''J''<sub>0.4</sub> of fences F3 and F4 was higher (Figure 5) owing to the higher local air velocities of fences F3 and F4. As the duct diameter rose from 0.2 to 0.4 m, the difference in air velocity for each fence increased, resulting in an increment in ''J''<sub>0.4</sub>. When the duct diameter was 0.3 m, ''J''<sub>0.4</sub>was generally smaller. Given the airflow field distribution, airflow uniformity, the space occupied by the duct, and the initial cost, we selected the 0.3 m duct as the inlet and outlet ventilation duct.
394
395
===3.3 Influence of wind velocity on simulation results===
396
397
Negative pressure ventilation was adopted in the pig nursery, and the duct diameter was set at 0.3 m. The situations ''V''1, ''V''2, and ''V''3 were simulated, and the air inlet and outlet velocities (''v<sub>in</sub>'',''v<sub>out</sub>'') were set as 0.5 and  -1.0 m/s; 1.0 and -1.5 m/s; 1.5 and -2.0 m/s, respectively. The simulation results at ''v<sub>in </sub>''= 1.0 m/s and ''v<sub>out</sub>''= -1.5 m/s are shown in Figure 4b. Other simulation results are shown in Figure 6.
398
399
[[File:Draft_Sanchez_Pinedo_108263404_8992_fig_6.JPG|center|400px]]
400
401
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
402
<span style="text-align: center; font-size: 75%;">'''Figure 6. Airflow fields at different air inlet and outlet velocities. (a) v<sub>in</sub> = 0.5 m/s and v<sub>out</sub> = -1.0 m/s; (b) v<sub>in</sub> = 1.5 m/s and v<sub>out</sub> = -2.0 m/s.'''</span></div>
403
<br>
404
At ''v<sub>in</sub>'' = 0.5 m/s and ''v<sub>out</sub>'' = -1.0 m/s, many windless areas appeared, and the air velocity on the side of the slatted floor was too low (Figure 6a). The air inlet and outlet velocities as well as the local air velocities on the concrete floor increased. At v<sub>in</sub> = 1.5 m/s and v<sub>out</sub> = -2.0 m/s, the local air velocity maximized to 0.4 m/s and the air velocity on the side of the slatted floor also increased (Figure 6b), but the weak ventilation on the side of the slatted floor was not fixed.
405
406
The variation curves of airflow uneven coefficient ''J''<sub>0.4</sub> for each fence calculated from Eqs. (5) and (6) are shown in Figure 7.
407
408
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
409
<span style="text-align: center; font-size: 75%;"> [[Image:Draft_Sanchez Pinedo_108263404-image20.png|264px]] </span></div>
410
411
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
412
<span style="text-align: center; font-size: 75%;">'''Figure 7. Effects of air velocities on the airflow uneven coefficient'''</span></div>
413
<br>
414
When the air velocity increased, the airflow uneven coefficient ''J''<sub>0.4 </sub>decreased. However, at ''v<sub>in </sub>''= 1.5 m/s and ''v<sub>out</sub>''= -2.0 m/s, the local air velocity difference for fence F4 was large, resulting in an increase of ''J''<sub>0.4 </sub>in this area. Given the airflow field distribution and airflow uniformity analysis results, the ventilation requirements of piglets were better met at ''v<sub>in </sub>''= 1.5 m/s and ''v<sub>out</sub>''= -2.0 m/s.
415
416
===3.4 Influence of ventilation inlet angle on simulation results===
417
418
According to the analysis results in sections 3.1 and 3.2, there were problems of excessive local air velocity in fences F3 and F4 and weak ventilation on the side of the slatted floor, regardless of the changes to duct diameter and air inlet and outlet velocities. The air inlet angle also changed the airflow field distribution. To improve this problem, the air inlet angle was changed. The air inlet angles at 60°, 45° and 30° were simulated when the duct diameter was 0.3 m, the air inlet and outlet velocities were ''v<sub>in </sub>''= 1.5 m/s and ''v<sub>out</sub>''= -2.0 m/s, the vertical ground angle was 90 °, and the inlet of the duct was inclined to the side of the slatted floor. The simulation results are shown in Figure 8.
419
420
[[File:Draft_Sanchez_Pinedo_108263404_4942_fig_8a.JPG|center|400px]]
421
422
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
423
<span style="text-align: center; font-size: 75%;">(a)</span></div>
424
425
[[File:Draft_Sanchez_Pinedo_108263404_5549_fig_8b.JPG|center|400px]]
426
427
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
428
<span style="text-align: center; font-size: 75%;">(b)</span></div>
429
430
[[File:Draft_Sanchez_Pinedo_108263404_4736_fig_8c.JPG|center|400px]]
431
432
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
433
<span style="text-align: center; font-size: 75%;">(c)</span></div>
434
435
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
436
<span style="text-align: center; font-size: 75%;">'''Figure 8. Airflow field at different air inlet angles. (a) A<sub>1</sub>=60 °; (b) A<sub>1</sub>=45 °; (c) A<sub>1</sub>=30 °.'''</span></div>
437
<br>
438
Comparison of the left side of the colorimetric map showed as the ventilation angle decreased, the area of maximum air velocity in the airflow field moved from the cement floor to the slatted floor, and the maximum air velocity for local ventilation decreased from 0.42 to 0.21 m/s. When the ventilation angle was 30°, many weakly ventilated areas appeared. At a ventilation angle of 45°,the ventilation was more uniform, and a few areas with weak ventilation were formed.
439
440
The variation curves of airflow uneven coefficient ''J''<sub>0.4 </sub>for each fence calculated as per Eqs. (5) and (6) are shown in Figure 9.
441
442
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
443
<span style="text-align: center; font-size: 75%;"> [[Image:Draft_Sanchez Pinedo_108263404-image24.png|282px]] </span></div>
444
445
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
446
<span style="text-align: center; font-size: 75%;">'''Figure 9. Effects of air inlet angles on the airflow uneven coefficient'''</span></div>
447
448
When the air inlet angle was 45°, the ''J''<sub>0.4</sub> of the other fences was smaller, except for F3 and F4 in which ''J''<sub>0.4</sub>was large because of the large local air velocity difference of the slatted floor. Nevertheless, the overall air velocity met the requirements of the piglets, and the air velocity on the side of the slatted floor increased, which was more conducive to the discharge of dirty gas. Given the reduction of the weak ventilation areas, an air inlet angle of 45° is more suitable for raising piglets.
449
450
===3.5 Structural Optimization and Testing===
451
452
Based on the numerical simulation results from the airflow field of the pig nursery under various conditions, the experimental pig nursery was redesigned by considering the variation in airflow uneven coefficient curves. The redesigned pig nursery is shown in Figure 10. Each fence was provided with an air inlet right above the concrete floor, and an air outlet in the middle aisle.
453
454
The main parameters are as follows: the diameters of both the inlet and outlet ducts were 0.3 m; the air velocities of the fans in the inlet and outlet ducts were 1.5 and 2.0 m/s, respectively; the air inlet was equipped with a hood to adjust the ventilation angle to 45 °.
455
456
[[File:Draft_Sanchez_Pinedo_108263404_2206_fig_10.JPG|center|600px]]
457
458
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
459
<span style="text-align: center; font-size: 75%;">'''Figure 10. '''The redesigned nursery</span></div>
460
461
The environmental conditions in the pig nursery from 6:00 on 19 January, 2020 to 6:00 the next day were monitored. The outdoor temperature maximized to -15 °C during the day, and minimized to -28 °C at night. The monitored parameters included temperature, relative humidity, and CO<sub>2</sub> and NH<sub>3</sub> concentrations. Data were sampled every 15 minutes, and 10 sets of data for each monitoring session were continuously sampled. The average values were then recorded. Some of the data are shown in Table 2.
462
463
The significance of differences between the monitoring data at each node was calculated to further analyze whether the airflow in the pig nursery was uniform under the duct ventilation mode. The variability of temperature, humidity, and CO<sub>2</sub> and NH<sub>3</sub> concentrations among the nodes was tested on SPSS. The results are shown in Table 5.
464
465
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
466
<span style="text-align: center; font-size: 75%;">'''Table 5. Monitoring data and difference analysis.''' </span></div>
467
468
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
469
|-
470
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span id='_Hlk162687683'></span>
471
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|
472
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">A</span>
473
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">B</span>
474
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">C</span>
475
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">D</span>
476
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">E</span>
477
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">F</span>
478
|-
479
|  rowspan='4' style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Control pig nursery</span>
480
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Temperature (℃)</span>
481
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">24.00±</span>
482
483
<span style="text-align: center; font-size: 75%;">0.66<sup>c</sup></span>
484
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">24.91±</span>
485
486
<span style="text-align: center; font-size: 75%;">0.48<sup>ac</sup></span>
487
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">24.96±</span>
488
489
<span style="text-align: center; font-size: 75%;">0.51<sup>a</sup></span>
490
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">24.91±</span>
491
492
<span style="text-align: center; font-size: 75%;">0.46<sup>ac</sup></span>
493
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">24.60±</span>
494
495
<span style="text-align: center; font-size: 75%;">0.48<sup>b</sup></span>
496
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.68±</span>
497
498
<span style="text-align: center; font-size: 75%;">0.53<sup>d</sup></span>
499
|-
500
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Humidity (%)</span>
501
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">78.19±</span>
502
503
<span style="text-align: center; font-size: 75%;">2.47<sup>c</sup></span>
504
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">88.46±</span>
505
506
<span style="text-align: center; font-size: 75%;">0.85<sup>b</sup></span>
507
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">85.53±</span>
508
509
<span style="text-align: center; font-size: 75%;">1.36<sup>b</sup></span>
510
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">90.24±</span>
511
512
<span style="text-align: center; font-size: 75%;">0.80<sup>a</sup></span>
513
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">90.35±</span>
514
515
<span style="text-align: center; font-size: 75%;">0.66<sup>a</sup></span>
516
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">88.32±</span>
517
518
<span style="text-align: center; font-size: 75%;">0.88<sup>b</sup></span>
519
|-
520
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">CO<sub>2</sub></span><span style="text-align: center; font-size: 75%;">(mg/m<sup>3</sup></span><span style="text-align: center; font-size: 75%;">)</span>
521
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1660.04±</span>
522
523
<span style="text-align: center; font-size: 75%;">124.82<sup>d</sup></span>
524
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1746.71</span>
525
526
<span style="text-align: center; font-size: 75%;">111.27<sup>c</sup></span>
527
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1784.72</span>
528
529
<span style="text-align: center; font-size: 75%;">128.58<sup>b</sup></span>
530
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1817.06</span>
531
532
<span style="text-align: center; font-size: 75%;">134.12<sup>ab</sup></span>
533
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1834.63</span>
534
535
<span style="text-align: center; font-size: 75%;">139.06<sup>a</sup></span>
536
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1754.94</span>
537
538
<span style="text-align: center; font-size: 75%;">119.27<sup>b</sup></span>
539
|-
540
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">NH<sub>3</sub></span><span style="text-align: center; font-size: 75%;">(mg/m<sup>3</sup></span><span style="text-align: center; font-size: 75%;">)</span>
541
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.42±</span>
542
543
<span style="text-align: center; font-size: 75%;">0.51<sup>c</sup></span>
544
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.59±</span>
545
546
<span style="text-align: center; font-size: 75%;">0.48<sup>b</sup></span>
547
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.75±</span>
548
549
<span style="text-align: center; font-size: 75%;">0.44<sup>a</sup></span>
550
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.74±</span>
551
552
<span style="text-align: center; font-size: 75%;">0.49<sup>a</sup></span>
553
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.79±</span>
554
555
<span style="text-align: center; font-size: 75%;">0.42<sup>a</sup></span>
556
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.72±</span>
557
558
<span style="text-align: center; font-size: 75%;">0.50<sup>ab</sup></span>
559
|-
560
|  rowspan='4' style="border-top: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Test pig nursery</span>
561
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Temperature (℃)</span>
562
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">22.91±</span>
563
564
<span style="text-align: center; font-size: 75%;">0.80<sup>c</sup></span>
565
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.47±</span>
566
567
<span style="text-align: center; font-size: 75%;">0.48<sup>b</sup></span>
568
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.51±</span>
569
570
<span style="text-align: center; font-size: 75%;">0.51<sup>b</sup></span>
571
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.75±</span>
572
573
<span style="text-align: center; font-size: 75%;">0.45<sup>a</sup></span>
574
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.91±</span>
575
576
<span style="text-align: center; font-size: 75%;">0.51<sup>a</sup></span>
577
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">23.41±</span>
578
579
<span style="text-align: center; font-size: 75%;">0.51<sup>b</sup></span>
580
|-
581
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">Humidity (%)</span>
582
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">53.21±</span>
583
584
<span style="text-align: center; font-size: 75%;">3.05<sup>b</sup></span>
585
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">64.56±</span>
586
587
<span style="text-align: center; font-size: 75%;">2.21<sup>a</sup></span>
588
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">64.62±</span>
589
590
<span style="text-align: center; font-size: 75%;">2.45<sup>a</sup></span>
591
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">64.74±</span>
592
593
<span style="text-align: center; font-size: 75%;">2.41<sup>a</sup></span>
594
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">64.87±</span>
595
596
<span style="text-align: center; font-size: 75%;">2.45<sup>a</sup></span>
597
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">64.56±</span>
598
599
<span style="text-align: center; font-size: 75%;">2.42<sup>a</sup></span>
600
|-
601
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">CO<sub>2</sub></span><span style="text-align: center; font-size: 75%;">(mg/m<sup>3</sup></span><span style="text-align: center; font-size: 75%;">)</span>
602
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">941.93±</span>
603
604
<span style="text-align: center; font-size: 75%;">36.31<sup>b</sup></span>
605
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1018.34±</span>
606
607
<span style="text-align: center; font-size: 75%;">41.11<sup>a</sup></span>
608
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1024.73±</span>
609
610
<span style="text-align: center; font-size: 75%;">41.08<sup>a</sup></span>
611
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1023.08±</span>
612
613
<span style="text-align: center; font-size: 75%;">39.05<sup>a</sup></span>
614
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1023.53±</span>
615
616
<span style="text-align: center; font-size: 75%;">40.24<sup>a</sup></span>
617
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1019.15±</span>
618
619
<span style="text-align: center; font-size: 75%;">40.21<sup>a</sup></span>
620
|-
621
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">NH<sub>3</sub></span><span style="text-align: center; font-size: 75%;">(mg/m<sup>3</sup></span><span style="text-align: center; font-size: 75%;">)</span>
622
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">1.10±</span>
623
624
<span style="text-align: center; font-size: 75%;">0.28<sup>c</sup></span>
625
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.10±</span>
626
627
<span style="text-align: center; font-size: 75%;">0.46<sup>b</sup></span>
628
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.22±</span>
629
630
<span style="text-align: center; font-size: 75%;">0.45<sup>a</sup></span>
631
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.21±</span>
632
633
<span style="text-align: center; font-size: 75%;">0.41<sup>a</sup></span>
634
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.27±</span>
635
636
<span style="text-align: center; font-size: 75%;">0.39<sup>a</sup></span>
637
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|<span style="text-align: center; font-size: 75%;">2.16±</span>
638
639
<span style="text-align: center; font-size: 75%;">0.40<sup>ab</sup></span>
640
|}
641
642
643
<span style="text-align: center; font-size: 75%;">Note: Differences between different letters in the same row are significant (p<0.05) and differences between the same mothers are not significant (''p''>0.05).</span>
644
645
Because node A was closer to the door and window and was more affected by the outdoor air, the data at node A were significantly different from the data at other nodes in both the control and test pig nurseries. The main reason for the consistency in the difference of NH<sub>3</sub> concentrations at different nodes in the two nurseries was that the amount and moment of fecal discharge were more random, resulting in large changes in NH<sub>3</sub> concentrations at a certain time point.
646
647
In the control pig nursery, the data of neighboring nodes were more significantly different. For instance, the differences in temperature and humidity between nodes B and C were not significant (''p'' >0.05), but the differences in CO<sub>2</sub> and NH<sub>3</sub>concentrations were significant (''p'' <0.05). In contrast, the data of neighboring nodes in the test pig nursery were less significantly different, such as the insignificant differences in temperature, humidity, and CO<sub>2</sub> concentration between nodes B and C (''p'' >0.05). This result indicates the test barn has better ventilation uniformity and is more suitable for piglet growth.
648
649
==4. Conclusions==
650
651
The duct-ventilated system of a pig nursery in a cold region was studied. CFD was used to simulate the airflow field of the pig nursery with different duct diameters, air velocities, and air inlet angles. The ventilation state in each case was evaluated and analyzed using the uneven coefficient of airflow field. The accuracy of the simulation results was verified through field measurement.
652
653
(1) The maximum relative error between the simulated and measured data is 20%, and the average relative error is 11.79%. The simulation results well agree with the actual environment, and thus can be used as a basis for optimizing the ventilation system design. Based on the CFD simulation and data analysis, the duct diameter was determined to be 0.3 m, the air inlet and outlet velocities were 1.5 and 2.0 m/s, respectively, and the ventilation angle was 45°.
654
655
(3) The ventilation system in the test pig nursery was modified, and the monitoring data in the control and test nurseries were compared. The data at neighboring nodes of the control pig nursery were significantly more different. The test pig nursery had significantly less difference in the data of neighboring nodes. Hence, the modified test pig nursery had better ventilation uniformity and was more suitable for the healthy growth of piglets.
656
657
The pig nursery ventilation system was optimally designed, but the control strategy still needs to be improved. To better control the pig nursery environment in the future, the coupling mechanism of the environment inside the pig house can be investigated, and the environmental control strategy related to the environment outside the pig nursery can be established. The seasonality of the pig nursery environment can also be analyzed to achieve autonomous and precise control of the pig house environment in different seasons.
658
659
===Acknowledgement:===
660
661
The author would like to thank the anonymous reviewers for their constructive comments, which helped improve the quality of this paper.
662
663
===Funding Statement:===
664
This work was supported by Collaborative Innovation Achievement Project of “Double First-Class” Disciplines in Heilongjiang Province, grant number LJGXCG2024-P25, Key Projects of Qiqihar City Scientific and Technological Plan, grant number ZDGG-202202, the Basic Research Fund for State-owned Universities in Heilongjiang Province, grant number 145309319, General Research Project on Higher Education Teaching Reform in Heilongjiang Province, grant number SJGY20220410, and Educational Science Research Project of Qiqihar University, grant number GJQTYB202212.
665
666
===Author Contributions:===
667
Zhidong Wu: Writing review, project administration; Kaixiang Xu: writing original draft; Yanwei Chen: Formal analysis; Yonglan Liu: Validation; Meiqi Liu: Conceptualization. All authors reviewed the results and approved the final version of the manuscript.
668
669
===Availability of Data and Materials:===
670
The experimental data are original and not convenient for public disclosure. If there is a reasonable request, please contact the authors.
671
672
===Conflicts of Interest:===
673
The authors declare no conflicts of interest to report regarding the present study.
674
675
===Ethics Approval:===
676
Not applicable.
677
678
==References ==
679
680
1. Wang B, Xiao H. Regional analysis on structure and competitiveness of China’s animal husbandry—Based on shift-share analysis space model. Chin J Agric Resour Reg Plan. 2021;42(5):142–8 (In Chinese).
681
682
2. Lesser T, Braun C, Wolfram F, Gottschall R. A special double lumen tube for use in pigs is suitable for different lung ventilation conditions. Res Vet Sci. 2020;133:111–6. doi:10.1016/j.rvsc.2020.09.007.
683
684
3. Costa A, Borgonovo F, Leroy T, Berckmans D, Guarino M. Dust concentration variation in relation to animal activity in a pig barn. Biosyst Eng. 2009;104(1):118–24.
685
686
4. Zong C, Li H, Zhang G. Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agri Ecosyst Environ. 2015;208:94–105. doi:10.1016/j.agee.2015.04.031.
687
688
5. Ma H, Xie Y, Li A, Zhang T, Liu Y, Luo X. A review on the effect of light-thermal–humidity environment in sow houses on sow reproduction and welfare. Reprod Domest Anim. 2023;8(8):1023–45. doi:10.1111/rda.14400.
689
690
6. Dai X, Ni JQ, Pan Q, Wang K, Heber AJ. Monitoring of temperature, humidity and air quality inside pig weaner house in Eastern China. Trans Chin Soc Agric Eng. 2016;47(7):315–22.
691
692
7. Wang D, Huang H, Zhang H, Liu J, Dong X. Analysis of research status and development on engineering technology of swine farming facilities. Trans Chin Soc Agric. 2018;49(11):1–14 (In Chinese). doi:10.6041/j.issn.1000-1298.2018.11.001.
693
694
8. Mostafa E, Hoelscher R, Diekmann B, Ghaly AE, Buescher W. Evaluation of two indoor air pollution abatement techniques in forced-ventilation fattening pig barns. Atmos Pollut Res. 2017;8(3):428–38. doi:10.1016/j.apr.2016.11.003.
695
696
9. Thalfeldt M, Kurnitski J, Latõˇ sov E. Exhaust air heat pump connection schemes and balanced heat recovery ventilation effect on district heat energy use and return temperature. Appl Ther Eng. 2018;128:402–14. doi:10.1016/j.applthermaleng.2017.09.033
697
698
10. Li X, Ye Z, Li B, Feng X, Zhu S, Shen P. Influence of different ventilation system on environment of nursery piggery in winter. Trans Chin Soc Agricult Mach. 2020;51:317–25 (In Chinese). doi:10.6041/j.issn.1000-1298.2020.03.036.
699
700
11. Kwon KS, Lee IB, Ha T. Identification of key factors for dust generation in a nursery pig house and evaluation of dust repipeion efficiency using a CFD technique. Biosyst Eng. 2016;151(3):28–52. doi:10.1016/j.biosystemseng.2016.08.020.
701
702
12. Xu X, Ge B, Tao D, Han J, Wang L. 3Dtemperaturefield of high-temperature gas cooling reactor cooling medium drive motor and ventilation structure improvement. IET Electr Pow Appl. 2018;12(7):1020–6. doi:10.1049/iet-epa.2017.0661.
703
704
13. Shi L, et al. Experimental study ontheapplication effect of targeted ventilation inmulti-floor farrowing sow house. J China Agricult Univ. 2023;28(2):217–26 (In Chinese). doi:10.11841/j.issn.1007-4333.2023.02.19.
705
706
14. Zong C, Feng Y, Zhang G, Hansen MJ. Effects of different air inlets on indoor air quality and ammonia emission from two experimental fattening pig rooms with partial pit ventilation system–Summer condition. Biosyst Eng. 2014;122:163–73.
707
708
15. Hu Z, Yang Q, Tao Y, Shi L, TuJ, WangY. Areview of ventilation and cooling systems for large-scale pig farms. Sustain Cities Soc. 2023;89:104372. doi:10.1016/j.scs.2022.104372.
709
710
16. Kim RW, Kim JG, Lee IB, Yeo UH, Lee SY. Development of a VR simulator for educating CFD-computed internal environment of piglet house. Biosyst Eng. 2019;188(1):243–64. doi:10.1016/j.biosystemseng.2019.10.024.
711
712
17. Wang K, Pan Q, Li K. Computational fluid dynamics simulation of the hygrothermal conditions in a weaner house in Eastern China. Trans ASABE. 2017;60(1):195–205. doi:10.13031/trans.11655.
713
714
18. Qi F, Zhao X, Shi Z, Rong L, Zhang G, Li H. Applicability evaluation of innovative simplified methods of slatted floor in pig houses-A CFD study. Comput Electron Agric. 2024;216(4):108532. doi:10.1016/j.compag.2023.108532.
715
716
19. Li H, Rong L, Zhang G. “Reliability of turbulence models and mesh types for CFD simulations of a mechanically ventilated pig house containing animals. Biosyst Eng. 2017;161:37–52. doi:10.1016/j.biosystemseng.2017.06.012.
717
718
20. Wei X, Li B, Lu H, Lü E, Guo J, Jiang Y, et al. Numerical simulation of airflow distribution in a pregnant sow piggery with centralized ventilation. Appl Sci. 2022;12(22):11556.
719
720
21. Cheng Q, Wu W, Li H, Zhang G, Li B. CFD study of the influence of laying hen geometry, distribution and weight on airflow resistance. Comput Electron Agric. 2018;144:181–9.
721
722
22. Yeo UH, Lee IB, Kim RW, Lee SY, Kim JG. Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment. Biosyst Eng. 2019;186:259–78.
723
724
23. Mossad RR. Numerical predictions of air temperature and velocity distribution to assist in the design of natural ventilation piggery buildings. Aust J Multi-Discip Eng. 2011;8(2):181–7. doi:10.1080/14488388.2011.11464837.
725
726
24. Guo J, Wei X, Du X, Ren J, Lü E. Numerical simulation of liquid nitrogen injection in a container with controlled atmosphere. Biosyst Eng. 2019;187(1):53–68. doi:10.1016/j.biosystemseng.2019.08.015.
727
728
25. Bjerg B, Cascone G, Lee IB, Bartzanas T, Norton T, Hong SW, et al. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosyst Eng. 2013;116(3):259–75. doi:10.1016/j.biosystemseng.2013.06.012.
729
730
26. Qin J, Pan H, Rahman MM, Tian X, Zhu Z. Introducing compressibility with SIMPLE algorithm. Math Comput Simulat. 2021;180(1):328–53. doi:10.1016/j.matcom.2020.09.010.
731
732
27. Wu Z, Fang J, Ba W, Wu S, Li H, Cai Y, et al. Design and evaluation of combined ventilation system with air supply and exhaust ducts for a pig nursery heating piggery in winter. Trans Chin Soc Agric Eng. 2021;37(10):152–8 (In Chinese)
733
734
28. Liu H, Fang H, Cheng R, Yang Q. Simulation and optimization of the air flow and temperature in plant factory with artificial light based on CFD. J China Agric Univ. 2018;23(5):108–16 (In Chinese).
735
736
29. Wang X, Chen Z, Wang M, Liu J. Numerical simulation of heat supply for heat recovery ventilation system of piggery in winter. Trans Chin Soc Agric Eng. 2011;27(12):227–33+438 (In Chinese).
737
738
30. Deng S, Shi Z, Li B, Zhao S, Ding T, Zheng W. CFDsimulation of airflow distribution in low profile cross ventilated dairy cattle barn. Trans Chin Soc Agric Eng. 2014;30(6):139–46 (In Chinese).
739
740
31. Wang H, Liu J, Wu Z, Feng G, Shen Z, Wang M. Airflow characteristics of attachment ventilation in a nursery pig house under heating mode. Biosyst Eng. 2022;224(9):346–60. doi:10.1016/j.biosystemseng.2022.10.018.
741
742
32. Gu Y, Mu J, Zheng S, Gang Z, Jing R, Wang C. Effect of jet hole arrangement on drag reduction
743
744
characteristics of jet surface. Trans Chin Soc Agric. 2014;45(10):340–6 (In Chinese).
745
746
33. Xing D, Yan C, Wang C, Sun L. Effects of aspect ratio of rectangular channel on characteristics of single phase laminar flow. Chin J Theoretical Appl Mech. 2013;45(3):331–6 (In Chinese).
747

Return to Wu et al 2024a.

Back to Top
GET PDF

Document information

Published on 28/11/24
Accepted on 09/10/24
Submitted on 18/07/24

Volume 40, Issue 3, 2024
DOI: 10.23967/j.rimni.2024.10.56321
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?