Abstract

In an earlier paper, Zienkiewicz and Codina (Int. j. numer. methods fluids, 20, 869–885 (1995)) presented a general algorithm for the solution of both compressible and incompressible Navier–Stokes equations. The algorithm, based on operator splitting, permits arbitrary interpolation functions to be used while avoiding the Babŭska–Brezzi restriction. In addition, its characteristic based approach introduces a form of rational dissipation. Zienkiewicz et al. (Int. j. numer. methods fluids, 20, 887–913 (1995)) presented the application of this algorithm in its fully explicit form to various inviscid compressible flow problems. They also presented two incompressible flow problems solved by the fully explicit form, employing a pseudo compressibility. The present work deals with the application of the above algorithm it its semi‐implicit form to some incompressible flow benchmark problems. Further, it extends the methodology to turbulent flows by employing both one, and two equation turbulence models. A comparison of results with earlier investigations is presented. Other issues addressed in this study include the effect of additional diffusion terms present in the scheme for both laminar and turbulent flow problems and some practical difficulties associated with local time stepping.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/1996

DOI: 10.1002/(SICI)1097-0363(19961030)23:8<787::AID-FLD452>3.0.CO;2-4
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 18
Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?