The feasibility of laminar flow control technology for future wing is bound to the development of a leading edge high-lift system that complies with the requirements on smooth surfaces to enable maintaining the laminar boundary layer flow, such as a Krueger flap. Although in principle the aerodynamic performance of a Krueger flap is known, the unsteady behaviour of the flow during deployment and retraction is completely unknown. This is as even more important as during deployment the Krueger flap is exposed to highly unfavourable positions perpendicular to the flow. To mitigate the risk of unfavourable aircraft behaviour, it is therefore expected that a Krueger flap has to be deflected significantly fast and may trigger unsteady aerodynamic effects. The European H2020 project UHURA, running from September 2018 to August 2022, has been focusing on the unsteady flow behaviour around such high-lift system and will first time deliver a deeper understanding of critical flow features at this type of high-lift device during their deployment and retraction together with a validated numerical procedure for its simulation. UHURA performed detailed experimental measurements in several wind tunnels to obtain a unique data set for validation purposes of Computational Fluid Dynamics (CFD) software, including detailed flow measurements by Particle Image Velocimetry (PIV) and other optical measurement technologies.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.033
Licence: CC BY-NC-SA license
Are you one of the authors of this document?