Abstract

The medium frequency transformer (MTF) is a key component of various new DC&ndash

DC converters that are designed for applications in modern electrical power grids at medium and high voltage. To attain the high performance that are necessary for targeting these applications, MFTs should have high power density and high efficiency as characteristics. For this endeavor, newly designed MFT procedures, which also take advantages of new core materials, are under investigation. Differently to other design proposals, most of which use conventional transformer design procedures based on equating core losses to copper conduction losses, in this paper, an MTF with a nanocrystalline (VITROPERM 500F) core is designed with a new procedure that is oriented in aiming the maximum flux density (Bmax). The characteristics of the MFTs that are obtained by using this procedure are compared with those of the MFTFs that are designed with a conventional procedure. The results show that by using the proposed technique, we get a 25% reduction in the winding size, a higher power density, and a lower MTF building cost while maintaining a high efficiency (&gt

98%). The design methodology is developed through a rigorous mathematical analysis that is verified with computer simulations in Matlab-Simulink and validated with experimental results from two MTF laboratory prototypes designed at a flux density of 0.9 T (75% Bmax) and 1.2 T (Bmax).

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://doaj.org/toc/2079-9292 under the license cc-by
https://www.mdpi.com/2079-9292/9/3/470/pdf,
https://academic.microsoft.com/#/detail/3011067779
http://dx.doi.org/10.3390/electronics9030470
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.3390/electronics9030470
Licence: Other

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?