Summary

Aortic flows with thrombus formation represent a challenging application of fluidstructure interaction (FSI) in biomechanics where blood flow, thrombus, and vessel wall are strongly coupled. Considering patient-specific FSI and thrombus formation on identical time scales remains unfeasible. To resolve this issue, we propose incorporating the dynamics-based thrombus formation model of Menichini et al. [1] into our recently presented semi-implicit, splitstep partitioned FSI scheme for non-Newtonian fluids [2, 3]. Herein, we formulate the basic split-step scheme and present the first promising results, merely coupling the fluid pressure and structure displacement iteratively at each time step.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.029
Licence: CC BY-NC-SA license

Document Score

0

Views 7
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?