Published in Int. J. Numer. Meth. Fluids Vol. 70 (7), pp. 829-850, 2011
doi:10.1002/fld.2713
In this work, a new enrichment space to accommodate jumps in the pressure field at immersed interfaces in finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that can be eliminated by means of static condensation. The new space is tested and compared with the classical space and to the space proposed by Ausas et al (Comp. Meth. Appl. Mech. Eng., Vol. 199, 1019–1031, 2010) in several problems involving jumps in the viscosity and/or the presence of singular forces at interfaces not conforming with the element edges. The combination of this enrichment space with another enrichment that accommodates discontinuities in the pressure gradient has also been explored, exhibiting excellent results in problems involving jumps in the density or the volume forces.