Abstact

We present an adaptive meshfree method to approximate phase-field models of biomembranes. In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume of a vesicle are written as functionals of a continuous phase-field, which describes the interface in a smeared manner. Such functionals involve up to second-order spatial derivatives of the phase-field, leading to fourth-order Euler–Lagrange partial differential equations (PDE). The solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically this high-order phase-field model with a direct Ritz–Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient than common tensor product methods (e.g. finite differences or spectral methods), and simpler than unstructured Cº finite element methods, applicable by reformulating the model as a system of second-order PDE. The proposed method, implemented here under the assumption of axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions to the sharp interface limit as the regularization parameter approaches zero. In a companion paper, we present a Lagrangian method based on the approximants analyzed here to study the dynamics of vesicles embedded in a viscous fluid. We present an adaptive meshfree method to approximate phase-field models of biomembranes. In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume of a vesicle are written as functionals of a continuous phase-field, which describes the interface in a smeared manner. Such functionals involve up to second-order spatial derivatives of the phase-field, leading to fourth-order Euler–Lagrange partial differential equations (PDE). The solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) meshfree basis functions, we approximate numerically this high-order phase-field model with a direct Ritz–Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient than common tensor product methods (e.g. finite differences or spectral methods), and simpler than unstructured C0C0 finite element methods, applicable by reformulating the model as a system of second-order PDE. The proposed method, implemented here under the assumption of axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions to the sharp interface limit as the regularization parameter approaches zero. In a companion paper, we present a Lagrangian method based on the approximants analyzed here to study the dynamics of vesicles embedded in a viscous fluid.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2013

DOI: 10.1016/j.jcp.2013.04.046
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 28
Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?