Summary

Projection-based model order reduction of an ordinary differential equation (ODE) results in a projected ODE. Based on this ODE, an existing reduced-order model (ROM) for finite volume discretizations satisfies the underlying conservation law over arbitrarily chosen subdomains. However, this ROM does not satisfy the projected ODE exactly but introduces an additional perturbation term. In this work, we propose a novel ROM with the same subdomain conservation properties which also satisfies the perturbed ODE exactly. We apply this ROM to the incompressible Navier-Stokes equations and show with regard to the mass equation how the novel ROM can be constructed to satisfy algebraic constraints. Furthermore, we show that the resulting mass-conserving ROM allows us to derive kinetic energy conservation and consequently nonlinear stability, which was not possible for the existing ROM due to the presence of the perturbation term.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.186
Licence: CC BY-NC-SA license

Document Score

0

Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?