Two algorithms for the stress update (i.e., time integration of the constitutive equation) in large-strain solid mechanics are discussed, with particular emphasis on two issues: (1) The incremental objectivity; and (2) the implementation aspects. It is shown that both algorithms are incrementally objective (i.e., they treat rigid rotations properly) and that they can be employed to add large-strain capabilities to a small-strain finite element (FE) code in a simple way. A set of benchmark tests, consisting of simple large deformation paths, have been used to test and compare the two algorithms, both for elastic and plastic analyses. These tests evidence different time-integration accuracy for each algorithm. However, it is also shown that the algorithm that is less accurate in general gives exact results for shear-free deformation paths.
Published on 01/01/1998
DOI: 10.1061/(ASCE)0733-9399(1998)124:9(939)
Licence: CC BY-NC-SA license
Are you one of the authors of this document?