When simulating high Reynolds number two-phase flow, boundary layers develop at the interface, which are much thinner compared to the capillary length-scales that are of interest. Resolving such an interface layer is expensive and therefore it is often not resolved in a simulation. Numerically such an underresolved interface layer results in a velocity discontinuity tangential to the interface. We propose to include such tangential velocity discontinuities in our numerical model. This results in a sharp two-fluid model for two-phase flow, where only the interface-normal component of the velocity field is smooth. This condition is implicitly enforced via a new jump condition on the pressure gradient, which we discretize using a multidimensional variant of the ghost fluid method [6]. Results are shown of breaking waves [2] as well as (breaking) waves impacting a solid wall [3] where we compare to state-of-the-art methods [3, 4]. We show that our proposed method is able to accurately simulate high Reynolds number two-phase flow without the need for resolving, or artificially thickening, of the interface layer.
Published on 11/03/21
Submitted on 11/03/21
Volume 600 - Fluid Dynamics and Transport Phenomena, 2021
DOI: 10.23967/wccm-eccomas.2020.234
Licence: CC BY-NC-SA license
Are you one of the authors of this document?