In this paper we review and clarify some aspects of the asymptotic analysis of the compressible Navier Stokes equations in the low Mach number limit. In the absence of heat exchange (the isentropic regime) this limit is well understood and rigorous results are available. When heat exchange is considered different simplified models can be obtained, the most famous being the Boussinesq approximation. Here a unified formal justification of these models is presented, paying special attention to the relation between the low Mach number and the Boussinesq approximations. Precise conditions for their validity are given for classical problems in bounded domains.