utomated Vehicles are an integral part of Intelligent Transportation Systems (ITSs) and are expected to play a crucial role in the future mobility services. This paper investigates two classes of self-driving vehicles: (i) Level 4&5 Automated Vehicles (AVs) that rely solely on their on-board sensors for environmental perception tasks, and (ii) Connected and Automated Vehicles (CAVs), leveraging connectivity to further enhance perception via driving intention and sensor information sharing. Our investigation considers and quantifies the impact of each vehicle group in large urban road networks in Europe and in the USA. The key performance metrics are the traffic congestion, average speed and average trip time. Specifically, the numerical studies show that the traffic congestion can be reduced by up to a factor of four, while the average flow speeds of CAV group remains closer to the speed limits and can be up to 300% greater than the human-driven vehicles. Finally, traffic situations are also studied, indicating that even a small market penetration of CAVs will have a substantial net positive effect on the traffic flows.
Comment: Accepted to IEEE VTC-Spring 2020, Antwerp, Belgium
The different versions of the original document can be found in:
Published on 01/01/2020
Volume 2020, 2020
DOI: 10.1109/vtc2020-spring48590.2020.9128758
Licence: CC BY-NC-SA license
Are you one of the authors of this document?