Abstract

In Galerkin meshfree methods, because of a denser and unstructured connectivity, the creation and assembly of sparse matrices is expensive. Additionally, the cost of computing basis functions can be significant in problems requiring repetitive evaluations. We show that it is possible to overcome these two bottlenecks resorting to simple and effective algorithms. First, we create and fill the matrix by coarse-graining the connectivity between quadrature points and nodes. Second, we store only partial information about the basis functions, striking a balance between storage and computation. We show the performance of these strategies in relevant problems.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2015

DOI: 10.1016/j.compstruc.2014.12.005
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 10
Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?