The work focuses on the numerical resolution of the discontinuous material bifurcation problem as a relevant ingredient in computational material failure mechanics. The problem consists of finding the conditions for the strain localization onset in terms of the so-called bifurcation time, localization directions and localization modes. A numerical algorithm, based on the iterative resolution of a coupled eigenvalue problem in terms of the localization tensor, is proposed for such purpose. The algorithm is shown to be always convergent to the exact solution for the symmetric case (major and minor symmetries of the tangent constitutive operator). In the unsymmetric case (only minor symmetries), the solution is no longer exact, although it is shown that using the symmetric part of the localization tensor in the proposed algorithms provides enough accurate solutions for most of cases. Numerical examples illustrate the benefits of the proposed methodology in terms of accuracy and savings in the computational cost associated with the problem
Published on 01/01/2010
DOI: 10.1002/nme.2870
Licence: CC BY-NC-SA license
Are you one of the authors of this document?