Abstract

This paper deals with a concept for a reconfigurable structure bio-inspired by the cell wall architecture of euglenids, a family of unicellular protists, and based on the relative sliding of adjacent strips. Uniform sliding turns a cylinder resulting from the assembly of straight and parallel strips into a cylinder of smaller height and larger radius, in which the strips are deformed into a family of parallel helices. We examine the mechanics of this cylindrical assembly, in which the interlocking strips are allowed to slide freely at their junctions, and compute the external forces (axial force and axial torque at the two ends, or pressure on the lateral surface) necessary to drive and control the shape changes of the composite structure. Despite the simplicity of the structure, we find a remarkably complex mechanical behaviour that can be tuned by the spontaneous curvature or twist of the strips.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2019

DOI: 10.1016/j.jmps.2018.09.036
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 2
Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?