Abstract

The magneto-hydrodynamic model is widely used for description of magnetized fluids in plasma dynamics, microfluidics, astrophysics and many other applications. In terms of modelling, the Lagrangian formulation is favourable for the rapid expansion during laser­target interaction for example. This is the case for inertial fusion and laboratory astrophysics applications, which are our primary interest. However, the proposed numerical method remains general and can be applied elsewhere. The conservation properties and divergence-free magnetic field are crucial aspects, which are not satisfied by the traditional numerical schemes. Here, the Lagrangian hydrodynamics using curvilinear finite elements is extended to the resistive magneto-hydrodynamics. An energy-conserving numerical scheme is formulated maintaining divergence-free magnetic field. The mixed finite element formulation provides theoretically arbitrary order of the spatial convergence and application on unstructured Lagrangian grids in multiple dimensions. An example of a physically relevant numerical simulation is presented.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 300 - Multiscale and Multiphysics Systems, 2021
DOI: 10.23967/wccm-eccomas.2020.186
Licence: CC BY-NC-SA license

Document Score

0

Views 39
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?