This paper proposes two time-integration algorithms for motion of geometrically exact 3D beams under sliding contact conditions. The algorithms are derived using the so-called master–slave approach, in which constraint equations and the related time-integration of a system of differential and algebraic equations are eliminated by design. Specifically, we study conservation of energy and momenta when the sliding conditions on beams are imposed and discuss their algorithmic viability. Situations where the contact jumps to adjacent finite elements are analysed in detail and the results are tested on two representative numerical examples. It is concluded that an algorithmic preservation of kinematic constraint conditions is of utmost importance.
Published on 01/01/2006
DOI: 10.1007/s11044-006-9025-3
Licence: CC BY-NC-SA license
Are you one of the authors of this document?