Fabric-reinforced cementitious matrices (FCRMs) are promising composite materials for the retrofitting and reinforcement of existing structures. In this study, vegetal meshes consisting of hemp and cotton coated with epoxy were manufactured and combined with a cementitious matrix to strengthen masonry walls. A synthetic glass fibre mesh was also tested. Several walls were manufactured, strengthened, and tested under cyclic loading. The results allow us to compare the performances of different mesh configurations in terms of size and materials. All strengthening solutions significantly increased shear strength capacity and the ability to dissipate energy compared to unreinforced walls. Further, all strengthened walls exhibited multi-track pattern distributions and achieved distortion capacity improvements of up to 300%. Indicators of stiffness, energy dissipation, damping, residual deformation, and damage allow us to compare the strengthening performances of different solutions. The vegetal solutions provided superior efficiency compared to the glass-FRCM strengthened walls. Additionally, the use of a larger volume of vegetal fibres reduces the consumption of cement and can provide a sustainable solution. The main failure mechanism of the vegetal-FCRMs was debonding, which can be remedied by improvements to material interfaces.
[1] Días RLB. Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos en zonas de amenaza alta y moderada. 2003:185–228.
[2] Babaeidarabad S, De Caso F, Nanni A. Out-of-Plane Behavior of URM Walls Strengthened with Fabric-Reinforced Cementitious Matrix Composite. Asce 2014;549:1–11. doi:10.1061/(ASCE)CC.
[3] Balsamo A, Di Ludovico M, Prota A, Manfredi G. Masonry walls strengthened with innovative composites. Am Concr Institute, ACI Spec Publ 2011;2:769–86.
[4] Snoeck D, Smetryns PA, De Belie N. Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosyst Eng 2015;139:87–99. doi:10.1016/j.biosystemseng.2015.08.007.
[5] Olivito RS, Cevallos OA, Carrozzini A. Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Mater Des 2014;57:258–68. doi:10.1016/j.matdes.2013.11.023.
[6] Cevallos OA, Olivito RS. Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos Part B Eng 2014;69:256–66. doi:10.1016/j.compositesb.2014.10.004.
[7] Menna C, Asprone D, Durante M, Zinno A, Balsamo A, Prota A. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. Constr Build Mater 2015;100:111–21. doi:10.1016/j.conbuildmat.2015.09.051.
[8] Mercedes L, Gil L, Bernat-maso E. Mechanical performance of vegetal fabric reinforced cementitious matrix ( FRCM ) composites. Constr Build Mater 2018;175:161–73. doi:10.1016/j.conbuildmat.2018.04.171.
[9] Bernat E, Gil L, Roca P, Escrig C. Experimental and analytical study of TRM strengthened brickwork walls under eccentric compressive loading. Constr Build Mater 2013;44:35–47. doi:10.1016/j.conbuildmat.2013.03.006.
[10] Comite tecnico AEN/CTN 80. Cales para contrucción-parte 1: Definiciones, especificaciones y criterios de conformidad. 2016.
[11] UNE-EN 1015-11. Métodos de ensayo de los morteros para albañilería - Parte 11: Determinación de la resistencia a flexión y a compresión del mortero endurecido, 2000, p. 14.
[12] EN 1504-3. EN 1504-3 Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 3: Structural and non-structural repair. Http://WwwAenorEs/ 2005.
[13] Micelli F, Aiello MA. Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments. Compos Part B Eng 2016. doi:10.1016/j.compositesb.2017.03.005.
[14] Donnini J, Corinaldesi V. Mechanical characterization of different FRCM systems for structural reinforcement. Constr Build Mater 2017;145:565–75. doi:10.1016/j.conbuildmat.2017.04.051.
[15] D’Antino T, Papanicolaou C. Mechanical characterization of textile reinforced inorganic-matrix composites. Compos Part B Eng 2017;127:78–91. doi:10.1016/j.compositesb.2017.02.034.
[16] American A, Standard N. Cyclic (Reversed) Load Test for Shear Resistance of Framed Walls for Buildings 1. Assembly n.d.:1–9.
[17] Ismail N, Ingham JM. In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng Struct 2016;118:167–77. doi:http://dx.doi.org/10.1016/j.engstruct.2016.03.041.
[18] Su Q, Cai G, Cai H. Seismic behaviour of full-scale hollow bricks-infilled RC frames under cyclic loads. Bull Earthq Eng 2016. doi:10.1007/s10518-016-0074-6.
[19] Hračov S, Pospíšil S, Garofano A, Urushadze S. In-plane cyclic behaviour of unfired clay and earth brick walls in both unstrengthened and strengthened conditions. Mater Struct 2015:3293–308. doi:10.1617/s11527-015-0720-5.
[20] Miranda L, Milosevic J, Bento R. Cyclic behaviour of stone masonry walls strengthened by grout injection. Mater Struct 2017;50:47. doi:10.1617/s11527-016-0911-8.
Published on 30/11/21
Submitted on 30/11/21
Volume Repair and strengthening strategies and techniques, 2021
DOI: 10.23967/sahc.2021.150
Licence: CC BY-NC-SA license
Are you one of the authors of this document?