Abstract

Modern communication networks offer advance and diverse applications, which require huge usage of network resources while providing quality of services to the users. Advance communication is based on multiple switched networks that cannot be handle by traditional IP (internet protocol) networks. GMPLS (Generalized multiprotocol label switched) networks, an advance version of MPLS (multiprotocol label switched networks), are introduced for multiple switched networks. Traffic engineering in GMPLS networks ensures traffic movement on multiple paths. Optimal path(s) computation can be dependent on multiple objectives with multiple constraints. From optimization prospective, it is an NP (non-deterministic polynomial-time) hard optimization problem, to compute optimal paths based on multiple objectives having multiple constraints. The paper proposed a metaheuristic Pareto based Bat algorithm, which uses two objective functions; routing costs and load balancing costs to compute the optimal path(s) as an optimal solution for traffic engineering in MPLS/GMPLS networks. The proposed algorithm has implemented on different number of nodes in MPLS/GMPLS networks, to analysis the algorithm performance.

Document type: Part of book or chapter of book

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1007/978-3-319-74690-6_4
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?