Abstract

A hybrid Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian grid is used as baseline mesh to cover the computational domain, while the boundary surfaces are addressed using a gridless method. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time-accurate solution of the compressible Euler equations. An overall speed-up factor of about eight and a saving in storage requirements about one order of magnitude for a typical three-dimensional problem in comparison with the unstructured grid method are demonstrated.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2006

DOI: 10.1016/j.jcp.2005.10.002
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?