Abstract

The resilience of historic areas is highly threatened by natural sudden onset events such as earthquakes. Major weak points of an urban environment, widely debated in the past literature, concern mainly masonry buildings. However, also the complex urban paths system could be prone to lose its functionality in the aftermath of a seismic event. Urban paths alterations due to earthquake effects can be attributed to extrinsic (i.e.: ruins formation from buildings) and intrinsic (e.g.: ground instability due to landslide or underground cavities) vulnerability; these factors jointly combined with exposure condition of hosted population in urban areas and with the local seismic hazard represent a possible impediment to evacuation process and at the same time, an obstacle to rescuers’ teams occupied in offering a first aid response. Therefore, the work aim is to apply a tool for preliminary evaluation of risk, strictly related to urban paths system considering all abovementioned aspects from a holistic point of view. This goal is achieved by a simplified methodology applicable to a wide-scale on a whole historic centre that takes advantages from a series of easy-to-detect parameters influencing the risk with limited availability of resources. Parameters grouped by topics (i.e.: path use and exposure; geometric features; physical-structural features; extrinsic vulnerability; seismic hazard) are assigned to scores and weights according to a multi-criteria decision-making process generating a numerical index. A typical Italian urban centre made by historical masonry constructions is assumed as a case study to implement the existing method. The detected risk indexes are then graphically provided through risk maps, a chromatic scale indicates which areas are more prone to possible unavailability of paths rather than others. Evacuation planners and emergency managers could embody this tool in their studies to prevent the high number of losses by guiding evacuees toward assembly points through the risk lower paths and to direct risk-reduction interventions punctually where critical condition emerges with different priority levels. Paths accessibility evaluation through a risk characterization could also result useful as a tool for rescuers’ activities optimization and for inhabitant disaster preparedness in terms of being familiar with safest and alternatives paths in emergency conditions.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

[1] S. Santarelli, G. Bernardini, E. Quagliarini, M. D’Orazio, New Indices for the Existing City-Centers Streets Network Reliability and Availability Assessment in Earthquake Emergency, Int. J. Archit. Herit. december (2017) 1–16. doi:10.1080/15583058.2017.1328543.

[2] A. Zlateski, M. Lucesoli, G. Bernardini, T.M. Ferreira, Integrating human behaviour and building vulnerability for the assessment and mitigation of seismic risk in historic centres: Proposal of a holistic human-centred simulation-based approach, Int. J. Disaster Risk Reduct. 43 (2019) 101392. doi:10.1016/j.ijdrr.2019.101392.

[3] P. Mouroux, B. Le Brun, Presentation of RISK-UE project, Bull. Earthq. Eng. 4 (2006). doi:10.1007/s10518-006-9020-3.

[4] L. Xinpo, H. Siming, Seismically induced slope instabilities and the corresponding treatments: The case of a road in the Wenchuan earthquake hit region, J. Mt. Sci. 6 (2009) 96–100. doi:10.1007/s11629-009-0197-1.

[5] G. Tesoriere, G. Marinella, M. Russello, Analisi della Vulnerabilità delle Reti Stradali in Aree Soggette a Rischio Sismico, in: XI S.I.I.V, 2001: p. 12.

[6] A. Cherubini, Progetto: SAVE - Strumenti Aggiornati per la Vulnerabilità sismica del patrimonio Edilizio e dei sistemi urbani, TASK 4 - Cap 2. (2003).

[7] E. Quagliarini, G. Bernardini, S. Santarelli, M. Lucesoli, Evacuation paths in historic city centres: A holistic methodology for assessing their seismic risk, Int. J. Disaster Risk Reduct. 31 (2018) 698–710. doi:10.1016/j.ijdrr.2018.07.010.

[8] S. Lagomarsino, S. Giovinazzi, Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings, Bull. Earthq. Eng. 4 (2006) 415–443. doi:10.1007/s10518-006-9024-z.

[9] T.L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill, 1980. https://books.google.it/books?id=Xxi7AAAAIAAJ.

[10] R. Ferlito, A.G. Pizza, A seismic vulnerability model for urban scenarios. Quick method for evaluation of roads vulnerability in emergency (Modello di vulnerabilità di un centro urbano. Metodologia per la valutazione speditiva della vulnerabilità della viabilità d’emergenza), Ing. Sismica. 4 (2011) 31–43.

[11] Ordinanza Presidente del Consiglio dei Ministri, Opcm 3519 28/04/2006, (2006).

[12] A. Martinelli, L. Corazza, Censimento di vulnerabilita degli edifici pubblici, strategici e speciali nelle regioni Abruzzo, Basilicata, Calabria, Campania, Molise, Puglia e Sicilia:valutazione della vulnerabilità degli edifici pubblici rilevati in 1510 comuni nelle regioni: Abruzz, Dipartimento della protezione civile, 1999.

[13] E. Quagliarini, M. Lucesoli, G. Bernardini, Rapid tools for assessing building heritage’s seismic vulnerability: a preliminary reliability analysis, J. Cult. Herit. (2019). doi:10.1016/j.culher.2019.03.008.

[14] Piantedosi Matteo, Circolare del 18 luglio 2018 - N. 11001/1/110/(10) Modelli organizzativi e procedurali per garantire alti livelli di sicurezza in occasione di manifestazioni pubbliche, (2018).

Back to Top
GET PDF

Document information

Published on 30/11/21
Submitted on 30/11/21

Volume Vulnerability and risk analysis, 2021
DOI: 10.23967/sahc.2021.149
Licence: CC BY-NC-SA license

Document Score

0

Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?