Corrosion rate in different steel grades (including oilfield pipeline steels) is determined by the presence of non-metallic inclusions (NMI) in steels. Specifically, the effect of different inclusions on the quality of steels depends on their characteristics such as size, number, morphology, composition, and physical properties, as well as their location in the steel matrix. Therefore, the optimization and control of NMI in steels are very important today to obtain an improvement of the material properties of the final steel products. It is well known that a Ca-treatment of liquid steels in ladle before casting is an effective method for modification of non-metallic inclusions for improvement of the steel properties. Therefore, the NMI characteristics were evaluated in industrial steel samples of low carbon Ca-treated steel used for production of oil-pipelines. An electrolytic extraction technique was used for extraction of NMI from the steel samples followed by three-dimensional investigations of different inclusions and clusters by using SEM in combination with EDS. Moreover, the number and compositions of corrosion active non-metallic inclusions were estimated in hot rolled steel samples from two different heats. Finally, the corrosion resistance of these steels can be discussed depending on the characteristics of non-metallic inclusions present in the steel.
Document type: Article
The different versions of the original document can be found in:
under the license https://creativecommons.org/licenses/by/4.0/
Published on 01/01/2019
Volume 2019, 2019
DOI: 10.3390/met9040391
Licence: Other
Are you one of the authors of this document?