Abstract

The paper focuses on the Continuum Strong Discontinuity Approach (CSDA) to fracture mechanics, and the traction-separation cohesive laws induced from continuum dissipative models as their projections onto the failure interface. They are compared with the cohesive laws commonly used for the fracture simulation in quasi-brittle materials, typically concrete. Emphasis is placed in the analysis of the mechanical stress-strain states induced by the CSDA into the fracture process zone: first when the damage mechanism is initiated and, after, when the cohesive model determines the crack response. The influence of the material parameters, particularly the fracture energy and the initial continuum softening modulus, in the obtained phenomenological responses is also analyzed. Representative numerical solutions of fracture problems are finally presented.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2006

DOI: 10.1007/s10704-005-3065-1
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?