Abstract

Reinforcement learning (RL)-based traffic signal control has been proven to have great potential in alleviating traffic congestion. The state definition, which is a key element in RL-based traffic signal control, plays a vital role. However, the data used for state definition in the literature are either coarse or difficult to measure directly using the prevailing detection systems for signal control. This paper proposes a deep reinforcement learning-based traffic signal control method which uses high-resolution event-based data, aiming to achieve cost-effective and efficient adaptive traffic signal control. High-resolution event-based data, which records the time when each vehicle-detector actuation/de-actuation event occurs, is informative and can be collected directly from vehicle-actuated detectors (e.g., inductive loops) with current technologies. Given the event-based data, deep learning techniques are employed to automatically extract useful features for traffic signal control. The proposed method is benchmarked with two commonly used traffic signal control strategies, i.e., the fixed-time control strategy and the actuated control strategy, and experimental results reveal that the proposed method significantly outperforms the commonly used control strategies.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://www.mdpi.com/1099-4300/21/8/744,
https://www.mdpi.com/1099-4300/21/8/744/pdf,
https://doi.org/10.3390/e21080744,
https://academic.microsoft.com/#/detail/2965341638 under the license cc-by
https://doaj.org/toc/1099-4300
http://dx.doi.org/10.3390/e21080744
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.3390/e21080744
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?