Abstract

In a more and more competitive and global world, freight transports have to overcome increasingly long distances while at the same time becoming more reliable. In addition, a raising awareness of the need for environmentally friendly solutions increases the importance of transportation modes other than road. Intermodal transportation, in that regard, allows for the combination of different modes in order to exploit their individual advantages. Intermodal transportation networks offer flexible, robust and environmentally friendly alternatives to transport high volumes of goods over long distances. In order to reflect these advantages, it is the challenge to develop models which both represent multiple modes and their characteristics (e.g., fixed-time schedules and routes) as well as the transhipment between these transportation modes. In this paper, we introduce a Green Intermodal Service Network Design Problem with Travel Time Uncertainty (GISND-TTU) for combined offline intermodal routing decisions of multiple commodities. The proposed stochastic approach allows for the generation of robust transportation plans according to different objectives (i.e., cost, time and greenhouse gas (GHG) emissions) by considering uncertainties in travel times as well as demands with the help of the sample average approximation method. The proposed methodology is applied to a real-world network, which shows the advantages of stochasticity in achieving robust transportation plans.


Original document

The different versions of the original document can be found in:

https://api.elsevier.com/content/article/PII:S0191261515002015?httpAccept=text/plain,
http://dx.doi.org/10.1016/j.trb.2015.09.007 under the license https://www.elsevier.com/tdm/userlicense/1.0/
http://orca.cf.ac.uk/96309,
https://research.tue.nl/en/publications/a-green-intermodal-service-network-design-problem-with-travel-tim,
https://www.narcis.nl/publication/RecordID/oai%3Apure.tue.nl%3Apublications%2Fe2f9032f-4a0a-49b0-8090-a06fa91b3602,
https://ideas.repec.org/a/eee/transb/v93y2016ipbp789-807.html,
https://trid.trb.org/view/1427751,
http://www.sciencedirect.com/science/article/pii/S0191261515002015,
https://EconPapers.repec.org/RePEc:eee:transb:v:93:y:2016:i:pb:p:789-807,
https://academic.microsoft.com/#/detail/2199523148
Back to Top

Document information

Published on 01/01/2016

Volume 2016, 2016
DOI: 10.1016/j.trb.2015.09.007
Licence: Other

Document Score

0

Views 11
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?