Abstract

Reasonable deployment of connected and automated vehicle (CAV) lanes which separating the heterogeneous traffic flow consisting of both CAVs and human-driven vehicles (HVs) can not only improve traffic safety but also greatly improve the overall roadway efficiency. This paper simplified CAV lane deployment plan into the problem of traffic network design and proposed a comprehensive decision-making method for CAV lane deployment plan. Based on the traffic equilibrium theory, this method aims to reduce the travel cost of the traffic network and the management cost of CAV lanes using a bilevel primary-secondary programming model. In addition, the upper level is the decision-making scheme of the lane deployment, while the lower level is the traffic assignment model including CAV and HV modes based on the decision-making scheme of the upper level. After that, a genetic algorithm was designed to solve the model. Finally, a medium-scaled traffic network was selected to verify the effectiveness of the proposed model and algorithm. The case study shows that the proposed method obtained a feasible scheme for lane deployment considering from both the system travel cost and management cost of CAV lanes. In addition, a sensitivity analysis of the market penetration rate of CAVs, traffic demand, and the capacity of CAVLs further proves the applicability of this model, which can achieve better allocation of system resources and also improve the traffic efficiency.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2020/9401062.xml,
http://dx.doi.org/10.1155/2020/9401062 under the license cc-by
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2020/9401062.pdf,
https://academic.microsoft.com/#/detail/3046814773
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.1155/2020/9401062
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?