Nowadays, huge efforts are made to modernize the air traffic management systems to cope with uncertainty, complexity and sub-optimality. An answer is to enhance the information sharing between the stakeholders. This paper introduces a framework that bridges the gap between air traffic management and air traffic control on the one hand, and bridges the gap between the ground, the approach and the en-route centers on the other hand. An original system is presented, that has three essential components: the trajectory models, the optimization process, and the monitoring process. The uncertainty of the trajectory is modeled with a Bayesian Network, where the nodes are associated to two types of random variables: the time of overflight on metering points of the airspace, and the traveling time of the routes linking these points. The resulting Bayesian Network covers the complete airspace, and Monte- Carlo simulations are done to estimate the probabilities of sector congestion and delays. On top of this trajectory model, an optimization process minimizes these probabilities by tuning the parameters of the Bayesian trajectory model related to overflight times on metering points. The last component is the monitoring process, that continuously updates the situation of the airspace, modifying the trajectories uncertainties according to actual positions of aircraft. After each update, a new optimal set of overflight times is computed, and can be communicated to the controllers as clearances for the aircraft pilots. The paper presents a formal specification of this global optimization problem, whose underlying rationale was derived with the help of air traffic controllers at Thales Air Systems.
Comment: SESAR 2nd Innovation Days (2012)
The different versions of the original document can be found in:
Published on 01/01/2012
Volume 2012, 2012
Licence: CC BY-NC-SA license
Are you one of the authors of this document?