Abstract

Moving object classification is essential for autonomous vehicle to complete high-level tasks like scene understanding and motion planning. In this paper, we propose a novel approach for classifying moving objects into four classes of interest using 3D point cloud in urban traffic environment. Unlike most existing work on object recognition which involves dense point cloud, our approach combines extensive feature extraction with the multiframe classification optimization to solve the classification task when partial occlusion occurs. First, the point cloud of moving object is segmented by a data preprocessing procedure. Then, the efficient features are selected via Gini index criterion applied to the extended feature set. Next, Bayes Decision Theory (BDT) is employed to incorporate the preliminary results from posterior probability Support Vector Machine (SVM) classifier at consecutive frames. The point cloud data acquired from our own LIDAR as well as public KITTI dataset is used to validate the proposed moving object classification method in the experiments. The results show that the proposed SVM-BDT classifier based on 18 selected features can effectively recognize the moving objects.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2020/1583129.xml,
http://dx.doi.org/10.1155/2020/1583129 under the license cc-by
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2020/1583129.pdf,
https://academic.microsoft.com/#/detail/3011866578
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.1155/2020/1583129
Licence: Other

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?