In critical state soil mechanics, the critical state refers to the combination of effective stress and void ratio (e) at which a soil continues to shear with no change in effective stress, shear stress, and e. The phenomena can be visualized using the critical state line (CSL). The CSL represents the locus of e at critical state with effective mean stress (σ′mean). To define the CSL, the CSL slope (λ), termed “compressibility,” and CSL y-axis intercept at 1 kPa (Γ), termed “altitude,” are required. The CSL in e – σ′mean space provides a simple model of complex soil behavior that allows engineers to construct constitutive models using the state parameter (ψ), which is the mathematical difference between the in-situ e of the soil and the e of the soil at critical state. Currently, Γ can be obtained only through laboratory testing, while λ and ψ can be obtained via laboratory testing or correlation. This paper presents forthcoming correlations based on the ΔQ soil behavior index (which is obtained via the cone penetration test, CPT) to forecast Γ, λ, and ψ, and compares the ΔQ-based correlations’ performance to other CPT-based correlations as well as to data obtained from literature. To compare the correlations, the authors used data from a site investigation performed in Fraser River sand as part of the Canadian Liquefaction Experiment.
Published on 06/06/24
Submitted on 06/06/24
Volume Digital and intelligent site characterization, 2024
DOI: 10.23967/isc.2024.032
Licence: CC BY-NC-SA license
Are you one of the authors of this document?