Estado de la cuestión sobre métodos científicos utilizados contra el fraude financiero, principalmente de tipo técnico (informáticos, económicos, matemáticos). Aunque algunas de las áreas científicas involucradas no están relacionadas con la tecnología -por ejemplo, la sociología-, es importante insistir en que todas ellas proporcionan herramientas útiles para detectar el fraude. La detección y prevención del fraude financiero es una tarea multidisciplinar, por lo que la solución a este problema de urgente actualidad deberán aportarla equipos multidisciplinares.
Abdullahi, Rabi’u; Mansor, Noorhayati (2015). “Fraud triangle theory and fraud diamond theory. Understanding the convergent and divergent for future research”. International journal of Academic Research in Accounting, Finance and Management Sciences, v. 5, n. 4, pp. 38-45. http://www.iiste.org/Journals/index.php/EJBM/article/viewFile/26274/26919
Dorminey, Jack; Fleming, A. Scott; Kranacher, Mary-Jo; Riley, Richard A. Jr. (2012). “The evolution of fraud theory”. Issues in accounting education, v. 27, n. 2, pp. 555-579. https://doi.org/10.2308/iace-50131
Mock, Theodore; Srivastava, Rajendra; Wright, Arnold M. (2017). “Fraud risk assessment using the fraud risk model as a decision aid”. Journal of emerging technologies in accounting, v. 14, n. 1, pp. 37-56. https://doi.org/10.2308/jeta-51724
Naruedomkul, Pornchai; Rodwanna, Pannipa; Wonglimpiyarat, Jarunee (2010). “Organization frauds in Thailand: A survey on risk factors”. International journal of criminal justice sciences, v. 5, n. 1, pp. 203-219. https://goo.gl/Zb2rkq
Ngai, Eric W.T.; Hu, Yong; Wong, Y. H.; Chen, Yijun; Sun, Xin (2011). “The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature”. Decision support systems, v. 50, n. 3, pp. 559-569. https://doi.org/10.1016/j.dss.2010.08.006
Richhariya, Pankaj; Singh, Prashant (2012). “A survey on financial fraud detection methodologies”. International journal of computer applications, v. 45, n. 22, pp. 975-1007. https://goo.gl/EZAuuu Szárnyas, Gábor; Koovári, Zsolt; Salánki, Ágnes; Varró, Dániel (2016). “Towards the characterization of realistic models: Evaluation of multidisciplinary graph metrics”. In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, pp. 87-94. https://inf.mit.bme.hu/sites/default/files/publications/models2016-metrics.pdf
Trompeter, Gregory M.; Carpenter, Tina D.; Jones, Keith L.; Riley, Richard A. Jr. (2014). “Insights for research and practice: What we learn about fraud from other disciplines”. Accounting horizons, v. 28, n. 4, pp. 769-804. https://doi.org/10.2308/acch-50816
West, Jarrod; Bhattacharya, Maumita (2016). “Intelligent financial fraud detection: a comprehensive review”. Computers & security, v. 57, pp. 47-66. https://doi.org/10.1016/j.cose.2015.09.005
Wilks, T. Jeffrey; Zimbelman, Mark F. (2004). “Using game theory and strategic reasoning concepts to prevent and detect fraud”. Accounting horizons, v. 18, n. 3, pp. 173-184. https://doi.org/10.2308/acch.2004.18.3.173
Zhao, Jie; Lau, Raymond Y.K.; Zhang, Wenping; Zhang, Kaihang; Chen, Xu; Tang, Deyu (2016). “Extracting and reasoning about implicit behavioral evidences for detecting fraudulent online transactions in e-Commerce”. Decision support systems, v. 86, pp. 109-121. https://doi.org/10.1016/j.dss.2016.04.003
Published on 25/04/18
Accepted on 25/04/18
Submitted on 25/04/18
Volume 12, 2018
DOI: 10.3145/thinkepi.2018.60
Licence: CC BY-NC-SA license
Are you one of the authors of this document?