This paper presents an approach on detection of largely occluded pedestrians. From a pair of synchronized cameras in the Visible Light (VL) and Far Infrared (FIR) spectrum individual detections are combined and final confidence is inferred using a small set of logic rules via a Markov Logic Network. Pedestrians not entirely contained in the image or occluded are detected based on the binary classification on subparts of the detection window. The presented method is applied to a pedestrian classification problem in urban environments. The classifier has been tested in an Intelligent Transportation System (ITS) platform as part of an Advanced Driver Assistance Systems (ADAS). This work was supported by the Spanish Government through the Cicyt projects FEDORA (GRANT TRA2010-20225-C03- 01) and Driver Distraction Detector System (GRANT TRA2011-29454-C03-02), and by the Comunidad de Madrid through the project SEGVAUTO (S2009/DPI- 1509).
The different versions of the original document can be found in:
Published on 01/01/2013
Volume 2013, 2013
DOI: 10.1109/itsc.2013.6728421
Licence: CC BY-NC-SA license
Are you one of the authors of this document?