The evaluation of the seismic safety of Andean colonial churches is of high importance as those buildings represent part of the identity of the society and are historical emblems for the communities. Most of these buildings are composed of elongated naves with adobe masonry walls with flexible (or nonexistent) horizontal diaphragms, which generates potential of out-of-plane failures. In the last decades, different methodologies using advanced numerical analyses have been developed that allow evaluating the structural behavior of historical constructions at the expense of an arduous computational effort. In the present paper, a simplified tool is proposed for the design of walls lateral reinforcement using buttresses. The tool uses limit analysis and provides an adequate buttress design according to the configuration of the wall and seismicity of the area where the church is located. The results of the application of the methodology showed that the developed tool provides fast and accurate alternatives for the seismic strengthening of Andean adobe churches. The use of buttresses as structural reinforcement control the development of out-of-plane failure mechanisms, and provide lateral stability and resistance to the structure.
[1] Lourenço, P., Mendes, N., Ramos, L. & Oliveira, D. (2011). Analysis of masonry structures without box behavior. International Journal of Architectural Heritage: Conservation, Analysis, and Restoration, 5(4-5), 369-382.
[2] Araujo, A., Lourenço, P., Oliveira, D. y Leite, J. (2012). Post-earthquake numerical assessment and reinforcement of St James Church, New Zealand. Conferencia 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisboa, Portugal.
[3] Krawinkler, H., & Seneviratna, G. (1998). Pros and cons of a pushover analysis of seismic performance evaluation. Jounal: Engineering Structures, 20(4-6), 452–464.
[4] Aguilar, R., Noel, M. & Ramos, L. (2019). Integration of reverse engineering and non-linear numerical analysis for the seismic assessment of historical adobe buildings. Journal: Automation in Construction, 98, 1-15.
[5] Tolles, E., Kimbro, E. & Ginell, W. (2003). Planning and engineering guidelines for the seismic retrofitting of historic adobe structures. The Getty Conservation Institute (GCI).
[6] NTC (2018). Normas Técnicas para las Construcciones. Italia.
[7] Rivera J. & Muñoz E. (2005). Caracterización estructural de materiales de sistemas constructivos en tierra: el adobe. Revista de Desastres Naturales, Accidentes e Infraestructura Civil, 5(2), 135-148.
[8] National Building Code of India (2016). Bureau of Indian standards (IBC). India.
[9] Norma E080 (2017). Diseño y construcción con tierra reforzada. Lima, Perú.
[10] OPCM (2003). Ordenanza del Presidente del Consejo de Ministros N° 3274. Roma, Italia
[11] Norma E030 (2016). Norma Técnica Diseño Sismorresistente: Reglamento Nacional de Construcciones. Lima, Perú.
[12] Aguilar, R. (2018). Informe Peritaje Estructural: Iglesia Virgen de la Asunción de Sacsamarca. Engineering & Heritage (PUCP).
[13] Aguilar, R., Marques, R., Sovero, K., Martel, C., Trujillano, F. y Boroschek, R. (2015). Investigations on the structural behaviour of archaeological heritage in Peru: From survey to seismic assessment. Engineering Structures, 95, 94-111.
[14] Faccio, P. (2012). Consolidamento degli edifice storici (Lezione N°7): Meccanismi di collasso. Venezia, Italia.
[15] Conde, C. & Schiavi, E. (2009). Métodos numéricos de resolución de ecuaciones no lineales. Universidad Politécnica de Madrid y Rey Juan Carlos, Madrid, España.
[16] Lourenço, P., Trujillo, A., Mendes, N. & Ramos, L. (2012). Seismic performance of the St. George of the Latins church: Lessons learned from studying masonry ruins. Journal: Engineering Structures, 40(2012), 501-518.
[17] Angelillo, M. (2014). Mechanics of Masonry Structures. New York, US: Springer.
[18] Lourenço, P & Roca, P. (2001). Analysis of historical constructions: From thrust-lines to advanced simulations. Historical Constructions, 91-116.
[19] Lourenço, P. (2009). Recent advances in masonry structures: Micromodelling and homogenization. Multiscale Modeling in Solid Mechanics: Computational Approaches, 251-294.
[20] Karanikoloudis, G. & Lourenço, P. (2018). Structural assessment and seismic vulnerability of earthen historic structures. Application of sophisticated numerical and simple analytical models. Journal: Engineering Structures, 160, 488–509.
Published on 30/11/21
Submitted on 30/11/21
Volume Seismic analysis and retrofit, 2021
DOI: 10.23967/sahc.2021.245
Licence: CC BY-NC-SA license
Are you one of the authors of this document?