Abstract

The Nordic power system is facing the challenge of the ongoing decrease of synchronous generation along with increased penetration of inverter based renewable generation leading to reduced system inertia. Meanwhile, the electrification of the transport sector will result in a significant amount of additional electrical loads. However, the electrification of private transport is a technology of growing interest that can provide flexibility to the power system if adequately utilized. Electric vehicles (EV) can be considered as temporary energy storage with availability, energy and capacity constraints. In this paper, we use first hand data of a real EV fleet of Tesla vehicles and their historical driving patterns to develop a two-stage stochastic optimization problem. This model maximizes the profit of a risk-averse EV aggregator that aims to place optimal bids on the day ahead in both energy and Frequency Containment Reserve (FCR) markets. Only uni-directional charging is examined, while we take into account uncertainty from prices and vehicle utilization. Case studies are carried out modelling individual vehicle driving behavior in different Nordic price areas in both winter and summer. We identify a strong alignment of EV availability and periods of high FCR prices. Results show that consumption is shifted largely towards early hours of the morning. When compared to a  reference ”cost of charging case”, up to 50% of the cost of charging can be covered in Norway, while the entire cost is met in Sweden.

QC 20181017

Original document

The different versions of the original document can be found in:

Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?