eer-reviewed The high growth rate of vehicles per capita now poses a real challenge to efficient Urban Traffic Control (UTC). An efficient solution to UTC must be adaptive in order to deal with the highly-dynamic nature of urban traffic. In the near future, global positioning systems and vehicle-tovehicle/ infrastructure communication may provide a more detailed local view of the traffic situation that could be employed for better global UTC optimization. In this paper we describe the design of a next-generation UTC system that exploits such local knowledge about a junction???s traffic in order to optimize traffic control. Global UTC optimization is achieved using a local Adaptive Round Robin (ARR) phase switching model optimized using Collaborative Reinforcement Learning (CRL). The design employs an ARR-CRL-based agent controller for each signalized junction that collaborates with neighbouring agents in order to learn appropriate phase timing based on the traffic pattern. We compare our approach to non-adaptive fixed-time UTC system and to a saturation balancing algorithm in a largescale simulation of traffic in Dublin???s inner city centre. We show that the ARR-CRL approach can provide significant improvement resulting in up to ~57% lower average waiting time per vehicle compared to the saturation balancing algorithm.
The different versions of the original document can be found in:
Published on 01/01/2008
Volume 2008, 2008
DOI: 10.1109/wiiat.2008.88
Licence: CC BY-NC-SA license
Are you one of the authors of this document?