Due to the continuous increment in complexity of the socio-technical systems, decision makers call for new methods which are able to support timely as well as accurate decision-making related to resilience management. The current methods tend to be polarized on: efficiency-thoroughness forcing decision makers in making decisions on the base of resource availability instead of the problem to be solved. This paper presents a new fast-forward, cost-effective, and thorough enough framework to quantify resilience of a complex socio-technical system. The approach extends the functional resonance analysis method (FRAM) with a numerical method for the quantification of the analysis (Q-FRAM). In particular, it has been extended and operationalized the qualitative concepts of functional variability and dumping capacities into a method in which key performance indicators are derived from the model and aggregated into four indicators representing the FRAM resilience cornerstones (anticipate, respond, monitor, learn) through a bottom-up hierarchical approach. Finally, the four indicators are composed in a unique system resilience index that expresses the total variability present in the system at instant t . A numerical example of the use of the framework is provided together with a validation based on a comparison of the proposed approach with the current landscape.
The different versions of the original document can be found in:
Published on 01/01/2019
Volume 2019, 2019
DOI: 10.1109/jsyst.2019.2905713
Licence: CC BY-NC-SA license
Are you one of the authors of this document?