Published in Comput. Methods Appl. Mech. Engrg. Vol. 191 (46), pp. 5253-5264, 2002
doi: 10.1016/S0045-7825(02)00443-7
In this paper a stabilized finite element method to deal with incompressibility in solid mechanics is presented. A mixed formulation involving pressure and displacement fields is used and a continuous linear interpolation is considered for both fields. To overcome the Babuška–Brezzi condition, a stabilization technique based on the orthogonal sub-scale method is introduced. The main advantage of the method is the possibility of using linear triangular or tetrahedral finite elements, which are easy to generate for real industrial applications. Results are compared with standard Galerkin and Q1P0 mixed formulations for nearly incompressible problems in the context of linear elasticity.
Published on 01/01/2002
DOI: 10.1016/S0045-7825(02)00443-7
Licence: CC BY-NC-SA license
Are you one of the authors of this document?