To improve the computation efficiency of optimally dispatching large-scale cluster electric vehicles (EVs) and to enhance the profit of a charging station (CS) for EVs, this study investigates the optimal dispatch of the CS based on a decentralized optimization method and a time-of-use (TOU) price strategy. With the application of the Lagrange relaxation method (LRM), a decentralized optimization model with its solution is proposed that converts the traditional centralized optimization model into certain sub-problems. The optimization model aims to maximize the profit of CS, but it comprehensively considers the charging preference of EV users, the operation constraints of the distribution network, and the TOU strategy adopted by the CS. To validate the proposed decentralized optimal dispatching method, a series of numerical simulations were conducted to demonstrate its effect on the computation efficiency and stability, the profit of the CS, and the peak-load shifting. The result indicates that the TOU strategy markedly increases the profit of the CS in comparison with the fixed electricity price mechanism, and the computation efficiency and stability are much better than those of the centralized optimization method. Although it does not compensate the load fluctuation completely, the proposed method with the TOU strategy is helpful for filling the valley of power use.
Document type: Article
The different versions of the original document can be found in:
under the license https://creativecommons.org/licenses/by/4.0/
Published on 01/01/2019
Volume 2019, 2019
DOI: 10.3390/electronics8030288
Licence: Other
Are you one of the authors of this document?