Transient analysis in diversion pipelines should be performed to ensure the safety of a hydropower system. After the establishment of a three-dimensional (3D) geometric model from the part upstream reservoir to the diversion pipeline end in a pumped storage hydropower (PSH) station, the hydraulic characteristics of the diversion system were solved by Reynold average Navier&ndash
Stokes (RANS) equations based on a volume of fluid (VOF) method under the condition of simultaneous load rejection of two units. The variations of the water level in the surge tank, the pressure at the pipeline end, and the velocity on the different pipeline sections with time were obtained through the calculation. The numerical results showed that the water level changing in the surge tank simulated by VOF was consistent with the field test data. These results also showed that a self-excited spiral flow occurs in the pipeline when the flow at the end of the pipeline was reduced to zero and its intensity decreased with the flow energy exhaustion. The discovery of the self-excited spiral flow in the study may provide a new explanation for the pressure wave attenuation mechanism.
Document type: Article
The different versions of the original document can be found in:
Published on 01/01/2018
Volume 2018, 2018
DOI: 10.3390/w11010044
Licence: Other
Are you one of the authors of this document?