Turnout is one key fundamental infrastructure in the railway signal system, which has great influence on the safety of railway systems. Currently, turnout fault diagnoses are conducted manually in China; engineers are obliged to observe the signals and make problem solving decisions. Thus, the accuracies of fault diagnoses totally depend on the engineers’ experience although massive data are produced in real time by the turnout microcomputer-based monitoring systems. This paper aims to develop an intelligent diagnosis method for railway turnout through Dynamic Time Warping (DTW). We firstly extract the features of normal turnout operation current curve and normalize the collected turnout current curves. Then, five typical fault reference curves are ascertained through the microcomputer-based monitoring system, and DTW is used to identify the turnout current curve fault through test data. The analysis results based on the similarity data indicate that the analyzed five turnout fault types can be diagnosed automatically with 100% accuracy. Finally, the benefits of the proposed method and future research directions were discussed.
Document type: Article
The different versions of the original document can be found in:
Published on 01/01/2017
Volume 2017, 2017
DOI: 10.1155/2017/3192967
Licence: Other
Are you one of the authors of this document?