Abstract

Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: \[ \partial_x \left[(|u_{x}|-\delta_1)_+^{q-1}\, \frac{u_{x}}{|u_{x}|}\right]+\partial_y \left[(|u_{y}|-\delta_2)_+^{q-1}\, \frac{u_{y}}{|u_{y}|}\right]=f, \] for $2\le q<\infty$ and some non negative parameters $\delta_1,\delta_2$. Here $(\,\cdot\,)_+$ stands for the positive part. We prove that if $f\in L^\infty_{loc}$, then $\ abla u\in L^r_{loc}$ for every $r\ge 1$.


Original document

The different versions of the original document can be found in:

https://basepub.dauphine.fr/handle/123456789/9874,
https://www.degruyter.com/view/j/acv.ahead-of-print/acv-2013-0007/acv-2013-0007.xml,
https://hal.archives-ouvertes.fr/hal-00722615/document,
https://academic.microsoft.com/#/detail/2052758893
https://hal.archives-ouvertes.fr/hal-00722615/document,
https://hal.archives-ouvertes.fr/hal-00722615/file/bracar0712.pdf
http://dx.doi.org/10.1515/acv-2013-0007 under the license http://hal.archives-ouvertes.fr/licences/copyright/
Back to Top

Document information

Published on 01/01/2014

Volume 2014, 2014
DOI: 10.1515/acv-2013-0007
Licence: Other

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?