A numerical model for the simulation of multiphase flows with free surfaces is presented. The model allows to incorporate in a unified manner several phases ranging from incompressible Newtonian flows, Oldroyd-B viscoelastic flows and neo-Hookean elastic solids deformations. We advocate a Eulerian modeling of the multiphase flows, relying on the volume fraction of liquid, describing multiple phases with those different rheologies.One advantage of the Eulerian approach is to allow for large deformations of elastic solids, and changes of topologies. The numerical framework relies on an operator splitting strategy and a two-grid method. The numerical model is validated with a numerical experiment based on the collision between two elastic bodies with free surfaces.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.203
Licence: CC BY-NC-SA license