Abstract

We present an implicit a posteriori finite element procedure to compute bounds for functional outputs of finite element solutions in large strain elasticity. The method proposed relies on the existence of a potential energy functional whose local minima, over a space of suitably chosen continuous functions, corresponds to the problem solution. The output of interest is cast as a constrained minimization problem over an enlarged discontinuous finite element space. A Lagrangian is formed were the multipliers are an adjoint solution, which enforces equilibrium, and hybrid fluxes, which constrain the solution to be continuous. By computing approximate values for the multipliers on a coarse mesh, strict upper and lower bounds for the output of interest on a suitably refined mesh, are obtained. This requires a minimization over a discontinuous space, which can be carried out locally at low cost. The computed bounds are uniformly valid regardless of the size of the underlying coarse discretization. The method is demonstrated with two applications involving large strain plane stress incompressible neo-Hookean hyperelasticity.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2002

DOI: 10.1016/S0045-7825(02)00356-0
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 2
Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?