This work develops new strategies to robustly apply Thrust Network Analysis (TNA) for the assessment of unreinforced masonry (URM) structures studied within the frame of limit analysis. It formulates and solves a nonlinear optimisation problem on thrust networks considering relevant constraints for the assessment of URM structures. Geometrical and force constraints are include such as the consideration of the structural envelope and bounds on the reaction forces. The objective functions studied correspond to the minimum and maximum horizontal thrusts of the vaults. To evaluate the level of stability of an existing structure, this work develops a methodology to estimate the geometric safety factor (GSF) and the minimum thickness of masonry vaults by solving sequential optimisation problems for increasingly tightened geometrical bounds. This procedure is implemented in a Python-based, open-access tool within the COMPAS framework and illustrated here on two- and three-dimensional applications that are relevant for the structural analysis of historical constructions.
[1] Hooke, R. A description of helioscopes, and some other instruments. London: printed by T.R. for John Martyn, (1676).
[2] Poleni, G. Memorie istoriche della gran cupola del Tempio Vaticano. Padua: Stamperia del Seminario, (1748).
[3] Heyman, J. The stone skeleton. Int. J. Solids Struct (1996) 2(2):249-279.
[4] Huerta, S. Mechanics of masonry vaults: The equilibrium approach. In: 3rd Int. Semin. Hist. Constr. Guimarães, Port. (2001), pp. 47-70.
[5] Ochsendorf, J. Collapse of masonry structures. University of Cambridge, (2002).
[6] O’Dwyer, D. Funicular analysis of masonry vaults. Comput. Struct. (1999) 73:187-197.
[7] Block, P. and Ochesendorf, J. Thrust network analysis: A new methodology for 3D equilibrium. J. Int. Assoc. Shell Spat. Struct. (2007) 48(155):1-7.
[8] Block, P. Thrust Network Analysis. Massachusetts Institute of Technology, (2009).
[9] Linkwitz K. and Schek, H. Einige Bemerkungen zur Berechnung von vorgespannten Seilnetzkonstruktionen. Ing. Arch. (1971) 40:145-158.
[10] Schek, H. The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. (1974) 3:115-134.
[11] Block P. and Lachauer L. Three-dimensional funicular analysis of masonry vaults. Mech. Res. Commun. (2014) 56:53-60.
[12] Block P. and Lachauer, L. Three-dimensional (3D) equilibrium analysis of gothic masonry vaults. Int. J. Archit. Herit. (2014) 8(3):312-335.
[13] Van Mele, T., Panozzo, D., Sorkine-Hornung, O. and Block, P. Best-fit thrust network analysis: Rationalization of freeform meshes. In: Shell Structuctures for Archiecture -Form Finding and Optimization, Routledge (2014), pp. 157-169.
[14] Marmo, F. and Rosati, L. Reformulation and extension of the thrust network analysis. Comput. Struct. (2017) 182:104-118.
[15] Cercadillo-García C. and Fernández-Cabo, J. L. Analytical and Numerical funicular analysis by means of the Parametric Force Density Method. J. Appl. Res. Technol. (2016) 14(2):108-124.
[16] Fraternali, F. A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mech. Res. Commun. (2010) 37(2):198-204.
[17] Angelillo, M., Babilio, E. and Fortunato, A. Singular stress fields for masonry-like vaults. Contin. Mech. Thermodyn. (2013) 25(2):423-441.
[18] Fraddosio, A., Lepore, N. and Piccioni, M. D. Thrust Surface Method: An innovative approach for the three-dimensional lower bound Limit Analysis of masonry vaults. Eng. Struct. (2019) 202:109846.
[19] Iannuzzo, A., Dell’Endice, A., Maia Avelino, R., Kao, G.T.C., Van Mele, T. and Block, P. COMPAS Masonry: A Computational Framework for Practical Assessment of Unreinforced Masonry Structures. In: Proceedings of the SAHC Symposium, Barcelona, (2021).
[20] Van Mele T. and Block P. Algebraic graph statics. CAD Comput. Aided Des. (2014) 53:104-116.
[21] Liew, A., Avelino, R., Moosavi, V., Van Mele, T. and Block, P. Optimising the load path of compression-only thrust networks through independent sets. Struct. Multidiscip. Optim. (2019) 60(1):231-244.
[22] Perez, R. E., Jansen, P. W. and Martins, J. R. R. A. pyOpt: A Python-Based Object Oriented Framework for Nonlinear Constrained Optimization. Struct. Multidiscip. Optim. (2012) 45(1):101-118.
[23] Heyman, J. The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press, (1995).
Published on 30/11/21
Submitted on 30/11/21
Volume Numerical modeling and structural analysis, 2021
DOI: 10.23967/sahc.2021.162
Licence: CC BY-NC-SA license
Are you one of the authors of this document?