Composite systems are a generally-accepted method for repairing corroded and mechanically-damaged onshore pipelines. The pipeline industry has arrived at this point after more than 15 years of research and investigation. Because the primary method of loading for onshore pipelines is in the circumferential direction due to internal pressure, most composite systems have been designed and developed to provide hoop strength reinforcement. On the other hand, offshore pipes (especially risers), unlike onshore pipelines, can experience significant tension and bending loads. As a result, there is a need to evaluate the current state of the art in terms of assessing the use of composite materials in repairing offshore pipelines and risers. The paper presents findings from a joint industry effort involving the Minerals Management Service, the Offshore Technology Research Center at Texas A&M University, Stress Engineering Services, Inc., and several composite repair manufacturers was undertaken to assess the state of the art using full-scale testing methods. Loads typical for offshore risers were used in the test program that integrated internal pressure, tension, and bending loads. This program is the first of its kind and likely to contribute significantly to the future of offshore riser repairs. It is anticipated that the findings of this program will foster future investigations involving operators by integrating their insights regarding the need for composite repair based on emerging technology.Copyright © 2011 by ASME
The different versions of the original document can be found in:
Published on 01/01/2011
Volume 2011, 2011
DOI: 10.1115/omae2011-49425
Licence: CC BY-NC-SA license
Are you one of the authors of this document?