Abstract

KGUNGOR, ALI PAYIDAR/0000-0003-0669-5715; DOGAN, Erdem/0000-0001-7802-641X WOS: 000267724800007 This study proposes an Artificial Neural Network (ANN) model and a Genetic Algorithm (GA) model to estimate the number of accidents (A), fatalities (F) and injuries (I) in Ankara, Turkey, utilizing the data obtained between 1986 and 2005. For model development, the number of vehicles (N), fatalities, injuries, accidents and population (P) were selected as model parameters. In the ANN model, the sigmoid and linear functions were used as activation functions with the feed forward-back propagation algorithm. In the GA approach, two forms of genetic algorithm models including a linear and an exponential form of mathematical expressions were developed. The results of the GA model showed that the exponential model form was suitable to estimate the number of accidents and fatalities while the linear form was the most appropriate for predicting the number of injuries. The best fit model with the lowest mean absolute errors (MAE) between the observed and estimated values is selected for future estimations. The comparison of the model results indicated that the performance of the ANN model was better than that of the GA model. To investigate the performance of the ANN model for future estimations, a fifteen year period from 2006 to 2020 with two possible scenarios was employed. In the first scenario, the annual average growth rates of population and the number of vehicles are assumed to be 2.0 % and 7.5%, respectively. In the second scenario, the average number of vehicles per capita is assumed to reach 0.60, which represents approximately two and a half-fold increase in fifteen years. The results obtained from both scenarios reveal the suitability of the current methods for road safety applications.


Original document

The different versions of the original document can be found in:

https://doaj.org/toc/1648-4142,
https://doaj.org/toc/1648-3480
https://doaj.org/toc/1648-4142,
https://doaj.org/toc/1648-3480
http://dx.doi.org/10.3846/1648-4142.2009.24.135-142
https://www.tandfonline.com/doi/abs/10.3846/1648-4142.2009.24.135-142,
[=citjournalarticle_230720_12 https://www.safetylit.org/citations/index.php?fuseaction=citations.viewdetails&citationIds[]=citjournalarticle_230720_12],
https://core.ac.uk/display/158419380,
https://academic.microsoft.com/#/detail/2053531352
Back to Top

Document information

Published on 01/01/2009

Volume 2009, 2009
DOI: 10.3846/1648-4142.2009.24.135-142
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?