Summary

We present in this work shock-/interface-capturing numerical methods in the finitevolume central-weighted essentially non-oscillatory (CWENO) reconstruction scheme on unstructured grids for the simulation of multi-component or multiphase compressible flows. Using the five-equation interface capturing models of Allaire et al. and Kapila et al. in the open-source unstructured compressible flow solver UCNS3D, we will demonstrate the capabilities and robustness of the CWENO in capturing and resolving the material interface in multicomponent/multiphase flows in the presence of strong gradients and material discontinuities, with oscillation free solutions and reduced numerical diffusion. To test our numerical methods, a simple one-dimensional test case and a more sophisticated 2d underwater test case with cavitation are considered. The numerical results of our study are compared with results from existing high-order methods. The results show that the CWENO is less dissipative without the spurious oscillations that typically develop at material boundaries and also gives a high-resolution description of the moving material interface with less artificial smearing than other high other schemes.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.052
Licence: CC BY-NC-SA license

Document Score

0

Views 47
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?