Congestion in the air traffic network is a problem with an increasing relevance for airlines costs as well as airspace safety. One of the major issue is the limited operative capacity of the air network. In this work an Autonomous Agent approach is proposed to solve in real time the problem of air traffic congestion. The air traffic infrastructures are modeled with a graph and are considered partitioned in different sectors. Each sector has its own decision agent dealing with the air traffic control involved in it. Each agent sector imposes a real time aircraft scheduling to respect both delay and capacity constrains. When a congestion is predicted, a new aircraft scheduling is computed. Congestion is solved when the capacity constrains are satisfied once again. This can be done by delaying on ground aircraft or/and rerouting aircraft and/or postponing the congestion. We have tested two different algorithms that calculate K feasible paths for each aircraft involved in the congestion. Some results are repo...
The different versions of the original document can be found in:
Published on 01/01/2017
Volume 2017, 2017
DOI: 10.1063/1.4981993
Licence: CC BY-NC-SA license
Are you one of the authors of this document?