A method for reducing the fuel consumption of a platoon of heavy-duty vehicles (HDVs) is described and evaluated in simulations for homogeneous and heterogeneous platoons. The method, which is based on speed profile optimization and is referred to as P-SPO, was applied to a set of road profiles of 10 km length, resulting in fuel reduction of 15.8% for a homogeneous platoon and between 16.8% and 17.4% for heterogeneous platoons of different mass configurations, relative to the combination of standard cruise control (for the lead vehicle) and adaptive cruise control (for the follower vehicle). In a direct comparison with MPC-based approaches, it was found that P-SPO outperforms the fuel savings of such methods by around 3 percentage points for the entire platoon, in similar settings. In P-SPO, unlike most common platooning approaches, each vehicle within the platoon receives its own optimized speed profile, thus eliminating the intervehicle distance control problem. Moreover, the P-SPO approach requires only a simple vehicle controller, rather than the two-layer control architecture used in MPC-based approaches.
Document type: Article
The different versions of the original document can be found in:
Published on 01/01/2018
Volume 2018, 2018
DOI: 10.1155/2018/4290763
Licence: Other
Are you one of the authors of this document?